Background:Cornus mas L, an olive-shaped red-colored single-seeded fruit, is used in traditional medicine in different parts of Europe and Asia.Objectives:In the present study, 40 male Wistar rats were randomly divided into five groups, and the effects of 21 days of intraperitoneally (IP) administration of 50, 200 and 400 mg/kg body weight of C. mas hydro-methanolic extract on the rats hematological and biochemical parameters were investigated. The experimental study was carried out in Tabriz, Iran.Materials and Methods:The hematology and biochemical tests were performed by the Technicon H1 Hematology Analyzer and enzymatic methods, respectively.Results:The results indicated that all doses of the extract caused significant (P < 0.05) decreases in the hemoglobin distribution width (HDW) (2.3 ± 0.2 vs. 2.5 ± 0.2, P = 0.049) and platelet distribution width (PDW) (56.5 ± 1.8 vs. 63.9 ± 3.6, P = 0.001) of the treated groups vs. control group, whereas only high doses caused significant elevation in the mean corpuscular hemoglobin concentration (MCHC) (30.3 ± 0.8 vs. 28.6 ± 0.6, P = 0.047), mean platelet volume (MPV) (5.0 ± 0.6 vs. 4.1 ± 0.3, P = 0.002), total platelet mass (PCT) (0.33 ± 0.07 vs. 0.26 ± 0.01, P = 0.050), and significant decrease in the red cell distribution width (RDW) (13.8 ± 0.4 vs. 14.7 ± 1.3, P = 0.048) of the treated groups vs. control group.Conclusions:Decreasing effect of the extract on platelet activity might classify it as an alternative for antiplatelet therapy in cardiovascular diseases (CVD). The results of this study suggested that further investigations with higher doses of C. mas fruit extract are necessary to obtain significant protective and nonprotective changes in hematological and biochemical parameters.
The aim of this study was to investigate the applicability of microspheres containing protease inhibitor for oral delivery of insulin (CAS 9004-10-8). Microspheres of insulin were prepared by water-in-oil-in-oil (w/o1/o2) double emulsion solvent evaporation method. Formulations with different drug/polymer ratios were prepared and characterized by drug loading, loading efficiency, yield, particle size, scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR). The in vitro release studies were performed in pH 1.2 and 7.4. In vivo studies on rats were conducted in order to investigate the bioavailability and performance of oral microspheres. The best polymer to drug ratio in microspheres was 15.6:1 (F2 formulation). The loading efficiency was 77.36%, production yield was 54.55% and mean particle size was 222.4 microm. SEM studies showed that the microspheres were spherical and porous in nature. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the first order model. The results of enzymatic degradation indicated that insulin could be protected from trypsinic degradation in the microspheres. Our results indicate that the microspheres containing aprotinin (CAS 9087-70-1) have the advantage of high loading efficiency, pH responsive and prolonged release carrying insulin to the optimum site of absorption as well as the enhanced insulin absorption and biological response.
Background: Methotrexate (MTX), as one of the most pivotal drugs in treatment of some malignancies and autoimmune diseases, is associated with damages to different tissues particularly the liver tissue through impairing the balance between antioxidant and pro-oxidants. Pomegranate peel is a great source of polyphenols with antioxidant function that has recently become a center of attention.Objectives: The current study was undertaken to investigate the effects of MTX and pomegranate peel methanolic extract (PPME), alone and in combination, on liver antioxidants of rats.Methods: Antioxidant capacity, total phenolic and flavonoid contents of PPME were analyzed. 32 rats were divided into (1) control, (2) orally received 500 mg/kg PPME, (3) intramuscularly received 10 mg/kg MTX, and (4) PPME (for 18 days) and MTX (for 3 days beginning from the 10th day) groups. After the experimental period, the rats were euthanatized and tissue samples were obtained for antioxidant analysis.Results: PPME had a considerable antioxidant capacity, as well as total phenolic and flavonoid contents. There were low liver contents of Glutathione peroxidase (GPx) and Catalase and a high level of Malondialdehyde and Superoxide dismutase (SOD) in the Methotrexate group compared to the control group (P < 0.05). In the Methotrexate-PPME group, PPME could increase the GPx and Catalase contents and decrease the SOD content of the liver compared to the Methotrexate group. GPx of liver samples in the PPME group decreased (P < 0.05). GPx decreased and Malondialdehyde increased in the Methotrexate-PPME group compared to the control group (P < 0.05). Conclusions:Methotrexate can surprisingly increase SOD and Malondialdehyde and decrease Catalase contents. PPME can decrease GPx and relatively prevent the effects of Methotrexate on SOD and Catalase contents of the liver tissue. However, further studies are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.