BackgroundHuman Papillomavirus (HPV) in cervical epithelium has been identified as the main etiological factor in the developing of Cervical Cancer (CC), which has recently become a public health problem in Mexico. This finding has allowed for the development of vaccines that help prevent this infection. In the present study, we aimed to determine the prevalence and HPV type-distribution in Mexican women with CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL), and Normal cytology (N) to estimate the impact of the HPV vaccines.MethodsThe PubMed database was used to identify and review all articles that reported data on HPV prevalence in CC, precursor lesions, and normal cytology of Mexican women.ResultsA total of 8,706 samples of the tissues of Mexican women were stratified according to diagnosis as follows: 499 for CC; 364 for HSIL; 1,425 for LSIL, and 6,418 for N. According to the results, the most prevalent genotypes are the following: HPV16 (63.1%), -18 (8.6%), -58, and −31 (5%) for CC; HPV-16 (28.3%), 58 (12.6%), 18 (7.4%), and 33 (6.5%) for HSIL; HPV-16 (13.1%), 33 (7.4%), 18 (4.2%), and 58 (2.6%) for LSIL, and HPV-16 (3.4%), 33 (2.1%), 18, and 58 (1.2%) for N.ConclusionsTaken together, genotypes 58 and 31 (10%) are more common than type 18 (8.6%) in CC. Therefore, the inclusion of these two genotypes in a second-generation vaccine would provide optimal prevention of CC in Mexico.
Cervical cancer (CC) as other cancer types, presents molecular deregulations, such as the alterations of transcription factors. Krüppel-like factors (KLF) are a family of transcriptional regulators. They are involved in diverse cellular processes, such as proliferation, apoptosis, and angiogenesis among others. Here, we analyzed the expression of all 17 KLF members at messenger RNA (mRNA) level, and protein expression of the two most commonly altered KLF5 and KLF6 in cervical tissues. Fifty-nine cervical tissues ranging from normal tissue to CC were evaluated for KLF1-17 mRNA expression by end-point RT-PCR and KLF5 by qRT-PCR. For KLF5 and KLF6 protein analysis, a tissue microarray was constructed containing the 59 cases and subjected for immunohistochemistry assay and KLF6 IVS1-27G>A single nucleotide polymorphism by direct DNA sequencing. KLF2-16 expressions were present in normal tissue, whereas all 17 were present in Low-Grade Squamous Intraepithelial Lesion, High-Grade-SIL and CC, unrelated to presence of human papillomavirus (HPV). KLF5 mRNA expression gradually increased throughout the subgroups and overexpressed in CC (p=0.01). KLF5 and KLF6 proteins were immunodetected in all samples. For the KLF6 SNP analysis, 80% of the CC population analyzed presented GG genotype and the remaining 20% presented GA genotype (p=0.491). Our present data show that KLFs expression could not be related to HPV presence, at least at transcriptional level, and KLF5 mRNA overexpression could represent a potential molecular marker for CC; KLF6 SNP has no relation to increased risk of CC.
BackgroundCervical Cancer (CC) has become a public health concern of alarming proportions in many developing countries such as Mexico, particularly in low income sectors and marginalized regions. As such, an early detection is a key medical factor in improving not only their population’s quality of life but also its life expectancy. Interestingly, there has been an increase in the number of reports describing successful attempts at detecting cancer cells in human tissues or fluids using trained (sniffer) dogs. The great odor detection threshold exhibited by dogs is not unheard of. However, this represented a potential opportunity to develop an affordable, accessible, and non-invasive method for detection of CC.MethodsUsing clicker training, a male beagle was trained to recognize CC odor. During training, fresh CC biopsies were used as a reference point. Other samples used included cervical smears on glass slides and medical surgical bandages used as intimate sanitary pads by CC patients. A double-blind procedure was exercised when testing the beagle’s ability to discriminate CC from control samples.ResultsThe beagle was proven able to detect CC-specific volatile organic compounds (VOC) contained in both fresh cervical smear samples and adsorbent material samples. Beagle’s success rate at detecting and discriminating CC and non-CC odors, as indicated by specificity and sensitivity values recorded during the experiment, stood at an overall high (>90%). CC-related VOC in adsorbent materials were detectable after only eight hours of use by CC patients.ConclusionPresent data suggests different applications for VOC from the uterine cervix to be used in the detection and diagnosis of CC. Furthermore, data supports the use of trained dogs as a viable, affordable, non-invasive and, therefore, highly relevant alternative method for detection of CC lesions. Additional benefits of this method include its quick turnaround time and ease of use while remaining highly accurate and robust.
Epilepsy is a neuronal disease that affects up to 70 million people worldwide. The development of effective therapies to combat childhood epilepsy requires early biomarkers. Here, we performed a whole-genome microarray analysis in blood cells to identify genes differentially expressed between epileptic and epileptic valproic acid (VPA)-treated children versus normal children to obtain information about the gene expression to help us to understand genetic aspects of this disease. We found that the most significant differentially expressed genes were related to the transcriptional factor cAMP-response element binding protein (CREB) that is overexpressed in children with epilepsy compared with normal children, and 6 and 12 months of VPA treatment reversed several of these changes. Interestingly, leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), a type I transmembrane glycoprotein that binds collagen proteins and contains CREB binding sites, was one of the more up-regulated genes in epileptic patients, and treatment with VPA strongly reversed its up-regulation. CREB up-regulates genes related to epilepsy; here, we suggest that LAIR1 could activate CREB, and together, they trigger epilepsy. After VPA treatment, LAIR1 repressed genes by disrupting the functional LAIR1–CREB complex, resulting in successful treatment. A functional microarray analysis offers new information that could open novel avenues of research in biomarker discovery, which may be useful for the early identification of children with a predisposition to epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.