In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel-and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
Background
Coronavirus disease 19 is a viral infection caused by a novel coronavirus, SARS-CoV-2. It was first notified in Wuhan, China, is now spread into numerous part of the world. Thus, the world needs urgent support and encouragement to develop a vaccine or antiviral treatments to combat the atrocious outbreak.
Main body of the abstract
The origin of this virus is yet unknown; however, rapid transmission from human-to-human “Anthroponosis” has widely confirmed. The world is witnessing a continuous hike in SARS-CoV-2 infection. In light of the outbreak of coronavirus disease 19, we have aimed to highlight the basic and vital information about the novel coronavirus. We provide an overview of SARS-CoV-2 transmission, timeline and its pathophysiological properties which would be an aid for the development of therapeutic molecules and antiviral drugs. Immune system plays a crucial role in virus infection in order to control but may have dark side when becomes uncontrollable. The host and SARS-CoV-2 interaction describe how the virus exploits host machinery and how overactive host immune response can cause disease severity also addressed in this review.
Short conclusion
Safe and effective vaccines may be the game-changing tools, but in the near future wearing mask, washing hands at regular intervals, avoiding crowed, maintaining physical distancing and hygienic surrounding, must be good practices to reduce and break the transmission chain. Still, research is ongoing not only on how vaccines protect against disease, but also against infection and transmission.
Population explosion in the last decades together with global industrialization has caused heavymetal contamination of air, water and soil, resulting in diverse incurable effects on humans and on the stability of the ecosystem. Non-biodegradable heavy-metals can remain in the ecosystem and the threat associated with their bioaccumulation in food chains represents one of the major environmental and health problems of present day society. Several studies were carried out to understand the ecological effects of the heavy-metal Zn in soil-plant systems. Plants often have a zinc uptake that their systems cannot handle, due to the accumulation of zinc in soils. Of the several Zn toxicity symptoms, fatal are yield reduction, stunted growth, chlorosis, reduced chlorophyll synthesis and chloroplast degradation. Vigna unguiculata is an herbaceous, annual plant in the pea family Fabaceae. In the present study, an experiment was performed to evaluate the Zn phytoextracting ability of V. unguiculata under in vitro condition. We establish that V. unguiculata can uptake a considerable amount of the heavy-metal zinc and this phytoextraction property can be utilized in long run for the cleanup of zinc contaminated soil. To the best of our knowledge, this is the first report of Zn phytoextraction ability of V. unguiculata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.