This report is one in a series of Electrification Futures Study (EFS) publications. The EFS is a multi-year research project to explore potential widespread electrification in the future energy system of the United States. Electrification is defined as the substitution of electricity for direct combustion of non-electricity-based fuels (e.g., gasoline and natural gas) used to provide similar services.The EFS is specifically designed to examine electric technology advancement and adoption for end uses in all major economic sectors as well as electricity consumption growth and load profiles, future power system infrastructure development and operations, and the economic and environmental implications of electrification. Because of the expansive scope and the multi-year duration of the study, research findings and supporting data will be published as a series of reports, with each report released on its own timeframe. The table below shows the various research topics planned for examination under the EFS and how this report fits with the other components of the study. Topic Relation to this Report Electric technology cost and performance projections Provides technology data used in this report (Jadun et al. 2017) Electrification demand-side adoption scenarios This report Electric system supply-side scenarios Relies on electricity consumption reported in this report Electricity consumption patterns Relies on technology adoption projections reported in this report Electric system operations Relies on the consumption patterns and supplyside scenarios from other reports, which rely on data from this report Impacts assessment Relies on the technology adoption projections in this report along with data from other reportsThis report is the second publication in this series and presents scenarios of electric end-use technology adoption and resulting electricity consumption in the United States. The scenarios reflect a wide range of electricity demand growth through 2050 that result from various electric technology adoption and efficiency projections in the transportation, residential and commercial buildings, and industrial sectors. The report describes the methodology, assumptions, and limitations of the analysis. The demand scenarios provided in this report will be used to inform the supply scenarios and impacts to be presented in future reports under the EFS project. Results from the current demand-side scenarios can also be used by other researchers who wish to explore implications of electrification and demand growth in the U.S. economy.More information, the supporting data associated with this report, links to other reports in the EFS study, and information about the broader study are available at www.nrel.gov/efs. vi
We are especially grateful to Walter Short who first envisioned and developed the WinDS and ReEDS models. We also thank the NREL analysts who provided input on the technology costs, assumptions, and methodologies in ReEDS, including
AcknowledgmentsWe gratefully acknowledge the many people whose efforts contributed to this report. The ReEDS modeling and analysis team at the National Renewable Energy Laboratory (NREL) was active in developing and testing the ReEDS model v.2018. We also acknowledge the vast number of current and past NREL employees on and beyond the ReEDS team who have participated in data and model development, testing, and analysis. We are especially grateful to Walter Short who first envisioned and developed the Wind Deployment System (WinDS) and ReEDS models. We thank for their comments and improvements on successive versions of this report. Finally, we are grateful to all those who helped sponsor ReEDS model development and analysis, particularly supporters from the U.S. Department of Energy (DOE) but also others who have funded our work over the years.
We would like to thank all contributors for useful analysis, data, and input throughout the project. A technical review committee of senior-level experts provided invaluable input to the overall This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Cover image from iStock 452033401. NREL prints on paper that contains recycled content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.