One of the major drawbacks to the combustion of 100% biomass in power station boilers is the increase in the fouling and corrosion of superheaters. Experience shows that conventional superheater steels last no more than 20 000 h or four operating years before they must be replaced, if 100% wood-based fuel is used and the steam temperature is higher than 480 C. Rapid corrosion of superheaters leads to increased maintenance costs while widespread deposit formation gives rise to a decrease in efficiency of the turbine and an increase in unplanned outages. This paper reports on measures taken to reduce superheater corrosion.Most biomass fuels have a high content of alkali metals and chlorine, but they contain very little sulphur compared to fossil fuels. Potassium chloride, KCl, is found in the gas phase, condenses on the superheater tubes and forms complex alkali salts with iron and other elements in the steels. These salts have low melting points and are very corrosive. The corrosion can be mitigated by use of an instrument for in-situ measurement of alkali chlorides in the flue gases, in combination with the addition of ammonium sulphate. An ammonium sulphate solution, specially developed for the reduction of corrosion was sprayed into the flue gases and effectively converted KCl into potassium sulphate, K 2 SO 4 , much less corrosive than KCl.Deposit probe tests and long-term corrosion probe tests have been performed in-situ in two biomass-fired fluidised bed boilers. One boiler, 105 MW tot , 540 C steam, is the CHP plant in Nyköp-ing, Sweden. The other producing 98 MW tot , 480 C steam, is a bark-fired boiler at a pulp and paper mill in Munksund, also in Sweden. Tests have been performed with a range of steel types, ferritic and austenitic, with ammonium sulphate additive and under normal conditions (no additive). Corrosion rates have been measured, deposit chemistry analysed and flue gas chemistry and KCl content measured. The structure and composition of the oxide with and without ammonium sulphate has been investigated. The results show that ammonium sulphate reduced the KCl levels in the flue gases, removed the chlorides from the deposits and the metal/oxide interface, greatly reduced the deposition rates and halved the corrosion rates for superheater materials. The alkali chloride measuring system and the use of ammonium sulphate for the reduction of corrosion have now been patented.
The major drawback to generating electricity from waste fired boilers is the rapid corrosion of superheaters which increases the maintenance costs. Within the last few years, it has been shown that additions of ammonium sulphate to biomass fired boilers decrease the corrosion tendencies. This paper reports on the effects of ammonium sulphate on corrosion in a waste fired CFB boiler. Air cooled probes were exposed at a position corresponding to the one of superheater tubes. The probe temperature was 500uC, corresponding to a steam temperature of y450uC. Both the austenitic steel EN1?4301 (Fe-18Cr-9Ni) and the low alloyed ferritic steel EN1?7380 (Fe-2?25Cr-1Mo) were tested. During exposure, the concentration of alkali chlorides in the flue gas was measured and a decrease was observed when adding ammonium sulphate. After 4 h of exposure, the probes were removed for detailed analysis with SEM-EDS, TOF-SIMS and XRD. The sides of the tubes facing the flue gas were covered with a calcium rich deposit, while relatively more sodium and potassium were present on the lee side. The results also show that ammonium sulphate shifted the deposit composition from chloride rich and highly corrosive, to one significantly less corrosive and dominated by sulphates of sodium, potassium and calcium. Metallography shows a marked difference in corrosion attack between the two steels. Iron chlorides accumulate at the metal/oxide interface of the ferritic steel, while the amounts of iron chlorides were significantly lower in the austenitic steel. These results indicate that ammonium sulphate has the potential to reduce corrosion in waste fired boilers and that austenitic stainless steels are more likely to resist corrosion in these environments than low alloyed ferritic steels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.