Partial and dynamic reconfiguration provides a relevant new dimension to design efficient parallel embedded systems. However, due to the encasing complexity of such systems, ensuring the consistency and parallelism management at runtime is still a key challenge. So architecture models and design methodology are required to allow for efficient component reuse and hardware reconfiguration management.This paper presents a distributed persistence management model and its implementation for reconfigurable multiprocessor systems on dynamically reconfigurable circuits. The proposed approach is inspired from the well-known component based models used in software applications development. Our model is based on membranes wrapping the systems components. The objective is to improve design productivity and ensure consistency by managing context switching and storage using modular distributed hardware controllers. These membranes are distributed and optimized with the aim to design self-adaptive systems by allowing dynamic changes in parallelism degree and contexts migration. Simulation and synthesis results are given to show performances and effectiveness of our methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.