The high mortality rate of candidemia and the limited option for the treatment of Candida spp. infection have been driving the search for new molecules with antifungal property. In this context, coordination complexes of metal ions and ligands appear to be important. Therefore, this study aimed to synthesize two new copper(II) complexes with 2-thiouracil and 6-methyl-2-thiouracil ligands and to evaluate their mutagenic potential and antifungal activity against Candida. The complexes were synthesized and characterized by infrared vibrational spectroscopy, CHN elemental analysis, UV-Vis experiments and ESI-HRMS spectrometry studies. The antifungal activity was evaluated by broth microdilution against 21 clinical isolates of Candida species. The mutagenic potential was evaluated by the Ames test. The complexes were Cu(Bipy)Cl2(thiouracil) (Complex 1) and Cu(Bipy)Cl2(6-methylthiouracil) (Complex 2). Complex 1 showed fungicidal and fungistatic activities against all isolates. Furthermore, the Minimum Inhibitory Concentration (MIC) from 31 to 125 µg/mL and inhibition percentage of 9.9% against the biofilms of C. krusei and C. glabrata were demonstrated. At the concentrations tested, complex 1 exhibited no mutagenic potential. Complex 2 and the free ligands exhibited no antifungal activity at the concentrations evaluated. Since complex 1 presented antifungal activity against all the tested isolates and no mutagenic potential, it could be proposed as a potential new drug for anti-Candida therapy.
Aim: Elucidate the antifungal efficacy of biologically synthesized silver nanoparticles with ethanolic propolis extract (AgNPs PE) against the planktonic forms and biofilms of clinically important fungi. Materials & methods: AgNPs were synthesized, characterized and evaluated for cytotoxicity, mutagenicity and antimicrobial activity. Results: AgNPs PE displayed a colloidal appearance, good stability and size of 2.0–40.0 nm. AgNPs PE demonstrated lower cytotoxicity and nonmutagenic potential. In addition, AgNPs PE displayed antifungal properties against all tested isolates, inhibiting growth at concentrations lower than the cytotoxic effect. Mature biofilms treated for 48 h with AgNPs PE showed significant reduction of viable cells, metabolic activity and total biomass. Conclusion: This is the first time that AgNPs have been synthesized from an ethanolic extract of propolis only, proving antifungal, antibiofilm, atoxic and nonmutagenic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.