The high mortality rate of candidemia and the limited option for the treatment of Candida spp. infection have been driving the search for new molecules with antifungal property. In this context, coordination complexes of metal ions and ligands appear to be important. Therefore, this study aimed to synthesize two new copper(II) complexes with 2-thiouracil and 6-methyl-2-thiouracil ligands and to evaluate their mutagenic potential and antifungal activity against Candida. The complexes were synthesized and characterized by infrared vibrational spectroscopy, CHN elemental analysis, UV-Vis experiments and ESI-HRMS spectrometry studies. The antifungal activity was evaluated by broth microdilution against 21 clinical isolates of Candida species. The mutagenic potential was evaluated by the Ames test. The complexes were Cu(Bipy)Cl2(thiouracil) (Complex 1) and Cu(Bipy)Cl2(6-methylthiouracil) (Complex 2). Complex 1 showed fungicidal and fungistatic activities against all isolates. Furthermore, the Minimum Inhibitory Concentration (MIC) from 31 to 125 µg/mL and inhibition percentage of 9.9% against the biofilms of C. krusei and C. glabrata were demonstrated. At the concentrations tested, complex 1 exhibited no mutagenic potential. Complex 2 and the free ligands exhibited no antifungal activity at the concentrations evaluated. Since complex 1 presented antifungal activity against all the tested isolates and no mutagenic potential, it could be proposed as a potential new drug for anti-Candida therapy.
The presence of an integron did not necessarily confer resistance. Future studies will seek to identify the mechanism behind integron-mediated antimicrobial resistance.
The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.