Electricity theft is considered one of the most significant reasons of the non technical losses (NTL). It negatively influences the utilities in terms of the power supply quality, grid's safety, and economic loss. Therefore, it is necessary to effectively deal with the electricity theft problem. For detecting electricity theft in smart grids (SGs), an efficient and state-of-the-art approach is designed in the underlying work based on autoencoder and bidirectional gated recurrent unit (AE-BiGRU). The proposed approach consists of six components: (1) data collection, (2) data preparation, (3) data balancing, (4) feature extraction, (5) classification and (6) performance evaluation. Moreover, bidirectional gated recurrent unit (BiGRU) is used for the identification of the anomalies in electricity consumption (EC) patterns caused due to factors like family formation changes, holidays, parties, and so on, which are referred as non-theft factors. The proposed autoencoder-bidirectional gated recurrent unit (AE-BiGRU) model employs the EC data acquired from state grid corporation of China (SGCC) for simulations. Furthermore, it is visualized from the simulation results that 90.1% accuracy and 10.2% false positive rate (FPR) are obtained by the proposed model. The results are better than different existing classifiers, i.e., logistic regression (LR), decision tree (DT), extreme gradient boosting (XGBoost), gated recurrent unit (GRU), etc.
Electricity theft is one of the challenging problems in smart grids. The power utilities around the globe face huge economic loss due to ET. The traditional electricity theft detection (ETD) models confront several challenges, such as highly imbalance distribution of electricity consumption data, curse of dimensionality and inevitable effects of non-malicious factors. To cope with the aforementioned concerns, this paper presents a novel ETD strategy for smart grids based on theft attacks, long short-term memory (LSTM) and gated recurrent unit (GRU) called TLGRU. It includes three subunits: (1) synthetic theft attacks based data balancing, (2) LSTM based feature extraction, and (3) GRU based theft classification. GRU is used for drift identification. It stores and extracts the long-term dependency in the power consumption data. It is beneficial for drift identification. In this way, a minimum false positive rate (FPR) is obtained. Moreover, dropout regularization and Adam optimizer are added in GRU for tackling overfitting and trapping model in the local minima, respectively. The proposed TLGRU model uses the realistic EC profiles of the Chinese power utility state grid corporation of China for analysis and to solve the ETD problem. From the simulation results, it is exhibited that 1% FPR, 97.96% precision, 91.56% accuracy, and 91.68% area under curve for ETD are obtained by the proposed model. The proposed model outperforms the existing models in terms of ETD.
In the modern world, there are numerous opportunities that help in the detection of electricity theft happening in the realm of electricity grids due to the widespread shifting of people from old metering infrastructure to advanced metering infrastructure (AMI). It is done by studying the consumers' energy consumption (EC) readings provided by the smart meters (SM). The literature introduces a variety of machine learning (ML) and deep learning (DL) strategies to use EC data for identifying power theft in smart grids (SGs). However, the existing schemes provide low performance in terms of electricity theft detection (ETD) due to the usage of imbalanced data and using schemes in an individual manner. Moreover, the existing detectors are validated using a limited number of performance evaluation measures, which are not suitable for conducting model's comprehensive validation. To tackle the above mentioned problems, an ML boosting classifiers based stacking ensemble model (MLBCSM) is proposed followed by adaptive synthetic sampling technique (ADASYN) in the underlying work. Data preprocessing followed by data balancing and classification are the three major parts of the model introduced in this work. Besides, the EC data acquired from the consumers' SMs is used for detecting electricity theft. Moreover, the simulation results reveal that MLBCSM combines the benefits of adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), histogram boosting (HistBoost), categorical boosting (CatBoost), and light gradient boosting (LGBoost). Additionally, the model's validation is ensured via different metrics. It is deduced via extensive simulations that the proposed model's outcomes are superior to those produced by the individual models in terms of ETD.
Obtaining outstanding electricity theft detection (ETD) performance in the realm of advanced metering infrastructure (AMI) and smart grids (SGs) is quite difficult due to various issues. The issues include limited availability of theft data as compared to benign data, neglecting dimensionality reduction, usage of the standalone (single) electricity theft detectors, etc. These issues lead the classification techniques to low accuracy, minimum precision, low F1 score, and overfitting problems. For these reasons, it is extremely crucial to design such a novel strategy that is capable to tackle these issues and yield outstanding ETD performance. In this article, electricity theft happening in SGs is detected using a novel ETD approach. The proposed approach comprises recursive feature elimination (RFE), k nearest neighbor oversampling (KNNOR), bidirectional long short term memory (BiLSTM), and logit boosting (LogitBoost) techniques. Furthermore, three BiLSTM networks and a LogitBoost model are combined to make a BiLSTM-LogitBoost stacking ensemble model. Data preprocessing and feature selection followed by data balancing and electricity theft classification are the four major stages of the model proposed for ETD. It is obvious from the simulations performed using state grid corporation of China (SGCC)'s electricity consumption (EC) data that our proposed model achieves 96.32% precision, 94.33% F1 score, and 89.45% accuracy, which are higher than all the benchmarks employed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.