A general dealloying strategy is developed to prepare multi-component alloys with high thermal stability, electrochemical durability, and catalytic activity.
Designing efficient single-atom catalysts (SACs) for oxygen evolution reaction (OER) is critical for water-splitting. However, the self-reconstruction of isolated active sites during OER not only influences the catalytic activity, but also limits the understanding of structureproperty relationships. Here, we utilize a self-reconstruction strategy to prepare a SAC with isolated iridium anchored on oxyhydroxides, which exhibits high catalytic OER performance with low overpotential and small Tafel slope, superior to the IrO 2. Operando X-ray absorption spectroscopy studies in combination with theory calculations indicate that the isolated iridium sites undergo a deprotonation process to form the multiple active sites during OER, promoting the O-O coupling. The isolated iridium sites are revealed to remain dispersed due to the support effect during OER. This work not only affords the rational design strategy of OER SACs at the atomic scale, but also provides the fundamental insights of the operando OER mechanism for highly active OER SACs.
Although significant progresses have been achieved recently in developing catalysts for electrochemical oxygen evolution in alkaline electrolytes, high performance catalysts toward oxygen evolution in acidic media have not been realized in spite of the technical importance for the development of promising energy transformation technologies including electrocatalytic water splitting, integrated (photo)electrochemistry cells, rechargeable metal-air batteries, and so on. Here, we synthesized a three-dimensional nanoporous Ir 70 Ni 30-x Co x alloy microwires as oxygen evolution reaction electrocatalyst using a dealloying strategy. The three dimensional binderfree np-Ir 70 Ni 15 Co 15 catalyst in 0.1 M HClO 4 shows a low overpotential (220 mV@ η = 10 mA cm −2), low Tafel slope (44.1 mV dec −1) and excellent corrosion resistance, significantly outperforming commercial IrO 2 catalysts. The excellent performance is attributed to the nanoporous structure and the alloying effect, which promote the permeation of electrolyte, accelerate the transportation of electrons. More importantly, the high valence Ir oxide species with low-coordination structure in np-Ir 70 Ni 15 Co 15 alloy are identified for the real catalytic sites of OER process by the XAS results acquired on synchrotron radiation. This work not only provides fundamental understandings of the correlation between surface activity and stability for OER catalysts, but also paves a new way to advanced electrocatalysts working in acidic media.
Highly-active, cost-effective and durable electrocatalysts for the oxygen reduction reaction (ORR) is critically important for renewable energy conversion and storage. Here we report a 3D bicontinuous nitrogen doped nanoporous graphene...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.