With the development of artificial intelligence, deep learning is widely used in the field of nonlinear time series forecasting. It is proved in practice that deep learning models have higher forecasting accuracy compared with traditional linear econometric models and machine learning models. With the purpose of further improving forecasting accuracy of financial time series, we propose the WT-FCD-MLGRU model, which is the combination of wavelet transform, filter cycle decomposition and multilag neural networks. Four major stock indices are chosen to test the forecasting performance among traditional econometric model, machine learning model and deep learning models. According to the result of empirical analysis, deep learning models perform better than traditional econometric model such as autoregressive integrated moving average and improved machine learning model SVR. Besides, our proposed model has the minimum forecasting error in stock index prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.