This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60 GHz local oscillator (LO) signal is delivered to the output, whereas the 20 GHz signal can be fed back for phase detection in a phaselocked loop. Third-harmonic boosting and extraction techniques are proposed and applied to the frequency generator. A prototype of the proposed frequency generator is implemented in digital 40 nm CMOS. It exhibits a PN of −100 dBc/Hz at 1 MHz offset from 57.8 GHz and provides 25% frequency tuning range (TR). The achieved figure-of-merit (FoM) is between 179 and 182 dBc/Hz.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
This article proposes a power-efficient highly linear capacitor-array-based digital-to-time converter (DTC) using a charge redistribution constant-slope approach. A fringecapacitor-based digital-to-analog converter (C-DAC) array is used to regulate the starting supply voltage of the constant discharging slope fed to a fixed-threshold comparator. The DTC operation mechanism is analyzed and design tradeoffs are investigated. The proposed DTC consumes merely 31 µW from a 1-V supply when clocked at 40 MHz, while achieving a fine resolution of 148 fs over a 9-bit range. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.96/1.07 LSB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.