The group velocity dispersion (GVD) of silicon nitride waveguides, prepared using plasma enhanced chemical vapor deposition, is studied and characterized experimentally in support of nonlinear optics applications. We show that the dispersion may be engineered by varying the geometry of the waveguide and demonstrate measured anomalous GVD values as high as −0.57 ps2/m and normal GVD values as high as 0.86 ps2/m. We also experimentally demonstrate the absence of any observed nonlinear loss at the telecommunications wavelength at peak intensities of up to 12 GW/cm2. Spectral broadening due to self phase modulation in silicon nitride waveguides with a nonlinear parameter of 1.4 W−1/m is also demonstrated.
Diffraction characteristics of high-spatial-frequency (HSF) gratings are evaluated for application to polarization-selective computer-generated holograms by the use of two different approaches: second-order effective-medium theory (EMT) and rigorous coupled-wave analysis (RCWA). The reflectivities and the phase differences for TE- and TM-polarized waves are investigated in terms of various input parameters, and results obtained with second-order EMT and RCWA are compared. It is shown that although the reflection characteristics can be accurately modeled with the second-order EMT, the phase difference created by form birefringence for TE- and TM-polarized waves requires the use of a more rigorous, RCWA approach. The design of HSF gratings in terms of their form birefringence and reflectivity properties is discussed in conjunction with polarization-selective computer-generated holograms. A specific design optimization example furnishes a grating profile that provides a trade-off between the largest form birefrin gence and the lowest reflectivities.
The nonlinear response and strong coupling of control channels in micromachined membrane deformable mirror (MMDM) devices make it difficult for one to control the MMDM to obtain the desired mirror surface shapes. A closed-loop adaptive control algorithm is developed for a continuous-surface MMDM used for aberration compensation. The algorithm iteratively adjusts the control voltages of all electrodes to reduce the variance of the optical wave front measured with a Hartmann-Shack wave-front sensor. Zernike polynomials are used to represent the mirror surface shape as well as the optical wave front. An adaptive experimental system to compensate for the wave-front aberrations of a model eye has been built in which the developed adaptive mirror-control algorithm is used to control a deformable mirror with 19 active channels. The experimental results show that the algorithm can adaptively update control voltages to generate an optimum continuous mirror surface profile, compensating for the aberrations within the operating range of the deformable mirror.
Polarizing beam splitters that use the anisotropic spectral reflectivity (ASR) characteristic of high-spatialfrequency multilayer binary gratings have been designed, fabricated, and characterized. Using the ASR effect with rigorous coupled-wave analysis, we design an optical element that is transparent for TM polarization and reflective for TE polarization at an arbitrary incidence angle and operational wavelength. The experiments with the fabricated element demonstrate a high efficiency (Ͼ97%), with polarization extinction ratios higher than 220:1 at a wavelength of 1.523 m over a 20°angular bandwidth by means of the ASR characteristics of the device. These ASR devices combine many useful characteristics, such as compactness, low insertion loss, high efficiency, and broad angular and spectral bandwidth operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.