Anomaly detection in multivariate time series is an important data mining task with applications to ecosystem modeling, network traffic monitoring, medical diagnosis, and other domains. This paper presents a robust algorithm for detecting anomalies in noisy multivariate time series data by employing a kernel matrix alignment method to capture the dependence relationships among variables in the time series. Anomalies are found by performing a random walk traversal on the graph induced by the aligned kernel matrix. We show that the algorithm is flexible enough to handle different types of time series anomalies including subsequence-based and local anomalies. Our framework can also be used to characterize the anomalies found in a target time series in terms of the anomalies present in other time series. We have performed extensive experiments to empirically demonstrate the effectiveness of our algorithm. A case study is also presented to illustrate the ability of the algorithm to detect ecosystem disturbances in Earth science data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.