The tropical climate of Thailand encourages very high mosquito densities in certain areas and is ideal for dengue transmission, especially in the southern region where the province Nakhon Si Thammarat is located. It has the longest dengue fever transmission duration that is affected by some important climate predictors, such as rainfall, number of rainy days, temperature and humidity. We aimed to explore the relationship between weather variables and dengue and to analyse transmission hotspots and coldspots at the district-level. Poisson probability distribution of the generalized linear model (GLM) was used to examine the association between the monthly weather variable data and the reported number of dengue cases from January 2002 to December 2018 and geographic information system (GIS) for dengue hotspot analysis. Results showed a significant association between the environmental variables and dengue incidence when comparing the seasons. Temperature, sea-level pressure and wind speed had the highest coefficients, i.e. β=0.17, β= –0.12 and β= –0.11 (P<0.001), respectively. The risk of dengue incidence occurring during the rainy season was almost twice as high as that during monsoon. Statistically significant spatial clusters of dengue cases were observed all through the province in different years. Nabon was identified as a hotspot, while Pak Phanang was a coldspot for dengue fever incidence, explained by the fact that the former is a rubber-plantation hub, while the agricultural plains of the latter lend themselves to the practice of pisciculture combined with rice farming. This information is imminently important for planning apt sustainable control measures for dengue epidemics.
Particulate matter (PM) is regarded a major problem worldwide because of the harm it causes to human health. Concentrations of PM with particle diameter less than 2.5 µm (PM2.5) and with particle diameter less than 10 µm (PM10) are based on various emission sources as well as meteorological factors. In Bangkok, where the PM2.5 and PM10 monitoring stations are few, the ability to estimate concentrations at any location based on its environment will benefit healthcare policymakers. This research aimed to study the influence of land use, traffic load, and meteorological factors on the PM2.5 and PM10 concentrations in Bangkok using a land-use regression (LUR) approach. The backward stepwise selection method was applied to select the significant variables to be included in the resultant models. Results showed that the adjusted coefficient of determination of the PM2.5 and PM10 LUR models were 0.58 and 0.57, respectively, which are in the same range as reported in the previous studies. The meteorological variables included in both models were rainfall and air pressure; wind speed contributed to only the PM2.5 LUR model. Further, the land-use types selected in the PM2.5 LUR model were industrial and transportation areas. The PM10 LUR model included residential, commercial, industrial, and agricultural areas. Traffic load was excluded from both models. The root mean squared error obtained by 10-fold cross validation was 9.77 and 16.95 for the PM2.5 and PM10 LUR models, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.