The stress wave reflection method is widely used in the detection of structure size and integrity due to its advantages of low environmental impact and convenience. The detection accuracy depends on the accurate extraction of the stress wave reflection period. The traditional peak–peak method (PPM) measures the time interval between the first two peaks of the reflected waves to extract the reflection period. However, human interpretation is not avoidable for identifying the weak peak due to signal energy leaks into the surrounding environment. This paper proposes an algorithm for automatic extraction of the stress wave reflection period based on image processing to avoid human interference. The image is the short-time Fourier transform (STFT) spectrogram of the reflected wave signal after applying wavelet denoising and quadratic self-correlation operations. The edge detection method of image processing is used to extract the periodically occurring trough in the image. Graying and filtering are performed to eliminate interference. The frequency of the trough distribution is calculated by using the fast Fourier transform (FFT), and then the reflection period of the stress wave is obtained. The effectiveness and accuracy of the proposed method are validated by measuring the different lengths of two buried metal piles in soil. Comparing with the existing method of extracting the stress wave reflection period, this new algorithm comprehensively utilizes the time–frequency domain information of the stress wave reflection signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.