We present PANOC, a new algorithm for solving optimal control problems arising in nonlinear model predictive control (NMPC). A usual approach to this type of problems is sequential quadratic programming (SQP), which requires the solution of a quadratic program at every iteration and, consequently, inner iterative procedures. As a result, when the problem is ill-conditioned or the prediction horizon is large, each outer iteration becomes computationally very expensive. We propose a line-search algorithm that combines forwardbackward iterations (FB) and Newton-type steps over the recently introduced forward-backward envelope (FBE), a continuous, real-valued, exact merit function for the original problem. The curvature information of Newton-type methods enables asymptotic superlinear rates under mild assumptions at the limit point, and the proposed algorithm is based on very simple operations: access to first-order information of the cost and dynamics and low-cost direct linear algebra. No inner iterative procedure nor Hessian evaluation is required, making our approach computationally simpler than SQP methods. The lowmemory requirements and simple implementation make our method particularly suited for embedded NMPC applications.
OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.
We employ the proximal averaged Newton-type method for optimal control (PANOC) to solve obstacle avoidance problems in real time. We introduce a novel modeling framework for obstacle avoidance which allows us to easily account for generic, possibly nonconvex, obstacles involving polytopes, ellipsoids, semialgebraic sets and generic sets described by a set of nonlinear inequalities. PANOC is particularly well-suited for embedded applications as it involves simple steps, its implementation comes with a low memory footprint and its fast convergence meets the tight runtime requirements of fast dynamical systems one encounters in modern mechatronics and robotics. The proposed obstacle avoidance scheme is tested on a lab-scale autonomous vehicle.
Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer” (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure–activity relationships for nanomaterials (NanoQSAR).
Risk-averse model predictive control (MPC) offers a control framework that allows one to account for ambiguity in the knowledge of the underlying probability distribution and unifies stochastic and worst-case MPC. In this paper we study risk-averse MPC problems for constrained nonlinear Markovian switching systems using generic cost functions, and derive Lyapunov-type risk-averse stability conditions by leveraging the properties of risk-averse dynamic programming operators. We propose a controller design procedure to design risk-averse stabilizing terminal conditions for constrained nonlinear Markovian switching systems. Lastly, we cast the resulting risk-averse optimal control problem in a favorable form which can be solved efficiently and thus deems risk-averse MPC suitable for applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.