We have observed that the dry-season length (DSL) has increased over southern Amazonia since 1979, primarily owing to a delay of its ending dates (dry-season end, DSE), and is accompanied by a prolonged fire season. A poleward shift of the subtropical jet over South America and an increase of local convective inhibition energy in austral winter (June-August) seem to cause the delay of the DSE in austral spring (September-November). These changes cannot be simply linked to the variability of the tropical Pacific and Atlantic Oceans. Although they show some resemblance to the effects of anthropogenic forcings reported in the literature, we cannot attribute them to this cause because of inadequate representation of these processes in the global climate models that were presented in the Intergovernmental Panel on Climate Change's Fifth Assessment Report. These models significantly underestimate the variability of the DSE and DSL and their controlling processes. Such biases imply that the future change of the DSE and DSL may be underestimated by the climate projections provided by the Intergovernmental Panel on Climate Change's Fifth Assessment Report models. Although it is not clear whether the observed increase of the DSL will continue in the future, were it to continue at half the rate of that observed, the long DSL and fire season that contributed to the 2005 drought would become the new norm by the late 21st century. The large uncertainty shown in this study highlights the need for a focused effort to better understand and simulate these changes over southern Amazonia.climate variability | rainforests | climate model projection F ifteen percent of global photosynthesis occurs in the Amazon rainforest (1), where 25% of plant species are found (2). This rainforest ecosystem normally removes C from the atmosphere but released more than 1 Pg of C to the atmosphere in the 2005 drought (3). Consequently, even a partial loss of these forests would substantially increase global atmospheric CO 2 (4, 5) and reduce biodiversity. The dry-season length (DSL) is among the most important climate limitations for sustaining rainforests (6-9), especially in southern Amazonia, where rainforests are exposed to relatively long dry seasons and vulnerable to increasing conversion of native forests to cultivated crops (10-12). The extreme droughts in 2005 and 2010 had strong impacts on the rainforest and its C cycle (3,13,14). These unusual events, along with possible increase of drought severity and DSL during the past few decades (e.g., refs. 15 and 16) heighten the urgency of understanding what causes these dry anomalies and whether they will continue into the future. Contrary to the observed drying, some global climate models that previously projected strong drying over Amazonia now project much weaker drying by the end of the 21st century as these models evolve (17). Do these observed events represent the extremes of natural climate variability, or do climate projections underestimate potential future changes? This study explores ...
The Andes is the longest cordillera in the world and extends from northern South America to the southern extreme of the continent (from 11 • N to 53 • S). The Andes runs through seven countries and is characterized by a wide variety of ecosystems strongly related to the contrasting climate over its eastern and western sides, as well as along its latitudinal extension. This region faces very high potential impacts of climate change, which could affect food and water security for about 90 million people. In addition, climate change represents an important threat on biodiversity, particularly in the tropical Andes, which is the most biodiverse region on Earth. From a scientific and societal view, the Andes exhibits specific challenges because of its unique landscape and the fragile equilibrium between the growing population and its environment. In this manuscript, we provide an updated review of the most relevant scientific literature regarding the hydroclimate of the Andes with an integrated view of the entire Andes range. This review paper is presented in two parts. Part I is dedicated to summarize the scientific knowledge about the main climatic features of the Andes, with emphasis on mean large-scale atmospheric circulation, the Andes-Amazon hydroclimate interconnections and the most distinctive diurnal and annual cycles of precipitation. Part II, which is also included in the research topic "Connecting Mountain Hydroclimate Through the American Cordilleras," focuses on the hydroclimate variability of the Andes at the sub-continental scale, including the effects of El Niño-Southern Oscillation.
Using hourly records from 51 rain gauges, spanning between 22 and 28 yr, the authors study the diurnal cycle of precipitation over the tropical Andes of Colombia. Analyses are developed for the seasonal march of the diurnal cycle and its interannual variability during the two phases of El Niño–Southern Oscillation (ENSO). Also, the diurnal cycle is analyzed at intra-annual time scales, associated with the westerly and easterly phases of the Madden–Julian oscillation, as well as higher-frequency variability (<10 days), mainly associated with tropical easterly wave activity during ENSO contrasting years. Five major general patterns are identified: (i) precipitation exhibits clear-cut diurnal (24 h) and semidiurnal (12 h) cycles; (ii) the minimum of daily precipitation is found during the morning hours (0900–1100 LST) regardless of season or location; (iii) a predominant afternoon peak is found over northeastern and western Colombia; (iv) over the western flank of the central Andes, precipitation maxima occur either near midnight, or during the afternoon, or both; and (v) a maximum of precipitation prevails near midnight amongst stations located on the eastern flank of the central Cordillera. The timing of diurnal maxima is highly variable in space for a fixed time, although a few coherent regions are found in small groups of rain gauges within the Cauca and Magdalena River valleys. Overall, the identified strong seasonal variability in the timing of rainfall maxima appears to exhibit no relationship with elevation on the Andes. The effects of both phases of ENSO are highly consistent spatially, as the amplitude of hourly and daily precipitation diminishes (increases) during El Niño (La Niña), but the phase remains unaltered for the entire dataset. We also found a generalized increase (decrease) in hourly and daily rainfall rates during the westerly (easterly) phase of the Madden–Julian oscillation, and a diminished (increased) high-frequency activity in July–October and February–April during El Niño (La Niña) years, associated, among others, with lower (higher) tropical easterly wave (4–6 day) activity over the Caribbean.
We evaluate the performance of a large ensemble of Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) over South America for a recent past reference period and examine their projections of twenty-first century precipitation and temperature changes. The future changes are computed for two time slices (2040–2059 and 2080–2099) relative to the reference period (1995–2014) under four Shared Socioeconomic Pathways (SSPs, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The CMIP6 GCMs successfully capture the main climate characteristics across South America. However, they exhibit varying skill in the spatiotemporal distribution of precipitation and temperature at the sub-regional scale, particularly over high latitudes and altitudes. Future precipitation exhibits a decrease over the east of the northern Andes in tropical South America and the southern Andes in Chile and Amazonia, and an increase over southeastern South America and the northern Andes—a result generally consistent with earlier CMIP (3 and 5) projections. However, most of these changes remain within the range of variability of the reference period. In contrast, temperature increases are robust in terms of magnitude even under the SSP1–2.6. Future changes mostly progress monotonically from the weakest to the strongest forcing scenario, and from the mid-century to late-century projection period. There is an increase in the seasonality of the intra-annual precipitation distribution, as the wetter part of the year contributes relatively more to the annual total. Furthermore, an increasingly heavy-tailed precipitation distribution and a rightward shifted temperature distribution provide strong indications of a more intense hydrological cycle as greenhouse gas emissions increase. The relative distance of an individual GCM from the ensemble mean does not substantially vary across different scenarios. We found no clear systematic linkage between model spread about the mean in the reference period and the magnitude of simulated sub-regional climate change in the future period. Overall, these results could be useful for regional climate change impact assessments across South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.