The photocatalytic degradationof EDTA overTiO2has been analyzed to establish the influence of oxidants on the reaction rate, the nature of the intermediates and the kinetic regime. Degussa P-25 suspensions containing EDTA at initial pH 3 in different concentrations were irradiated under near UV light. A Langmuirian behavior was observed.O2at saturation concentrations was found to be crucial for EDTA degradation. The rapid depletion of EDTA was not accompanied by a corresponding TOC decrease, indicating formation of refractory intermediates. An enhancement in TOC reduction could be achieved by keeping pH constant or by hydrogen peroxide addition. Addition of Fe(III) caused a remarkable increase on the initial rate of EDTA consumption and also on TOC decrease. Changes in both parameters clearly increased under the simultaneous addition of Fe(III) andH2O2, until limiting values.Some of the possible intermediates of EDTA degradation were evaluated in the filtered solution. So far, glycine, ethylenediamine, ammonium, formaldehyde, and formic, iminodiacetic, oxalic, oxamic, glycolic and glyoxylic acids have been identified in different proportions, depending on the experimental conditions. Different degradationpathways are proposed. Inthe presence of Fe(III), photo-Fenton reactions would contribute also to the degradation process.
A complete study on the photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) over TiO2 has been initiated, to establish the influence of several parameters on the reaction rate, the nature of the intermediates and the kinetic regime. TiO2 (Degussa P25) suspensions containing EDTA at pH 3 at different concentrations were irradiated under near UV light. A Langmuirian behavior was observed, from which kinetic constants have been obtained. Experiments with 5.0 mM EDTA (zero order kinetic regime) were performed for 3 hours irradiation under different conditions. Under N2 bubbling, depletion of EDTA was very low. Under O2 bubbling, the concentration of EDTA decreased around 90%. However, the corresponding decrease of TOC ranged only between 4.5% and 9%. A higher TOC reduction (22% or more) was obtained by keeping the pH constant by HClO4 addition, or by hydrogen peroxide addition. Addition of 0.5 mM Fe(III) caused a dramatic increase on the initial rate of EDTA depletion and approximately a 32% TOC decrease. Analysis of the filtered solution was performed by ion chromatography and capillary electrophoresis to monitor the disappearance of EDTA and the formation of degradation products after different irradiation times. So far, glycine, ethylenediamine, formic acid, ammonium, iminodiacetic acid, oxalic acid and glyoxylic acid have been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.