Recurrent respiratory tract infections (RRTIs) are the first leading cause of community‐ and nosocomial‐acquired infections. Antibiotics remain the mainstay of treatment, enhancing the potential to develop antibiotic resistances. Therefore, the development of new alternative approaches to prevent and treat RRTIs is highly demanded. Daily sublingual administration of the whole heat‐inactivated polybacterial preparation (PBP) MV130 significantly reduced the rate of respiratory infections in RRTIs patients, however, the immunological mechanisms of action remain unknown. Herein, we study the capacity of MV130 to immunomodulate the function of human dendritic cells (DCs) as a potential mechanism that contribute to the clinical benefits. We demonstrate that DCs from RRTIs patients and healthy controls display similar ex vivo immunological responses to MV130. By combining systems biology and functional immunological approaches we show that MV130 promotes the generation of Th1/Th17 responses via receptor‐interacting serine/threonine‐protein kinase‐2 (RIPK2)‐ and myeloid‐differentiation primary‐response gene‐88 (MyD88)‐mediated signalling pathways under the control of IL‐10. In vivo BALB/c mice sublingually immunized with MV130 display potent systemic Th1/Th17 and IL‐10 responses against related and unrelated antigens. We elucidate immunological mechanisms underlying the potential way of action of MV130, which might help to design alternative treatments in other clinical conditions with high risk of recurrent infections.
Summaryβ-Glucan-induced trained immunity in myeloid cells leads to long-term protection against secondary infections. Although previous studies have characterized this phenomenon, strategies to boost trained immunity remain undefined. We found that β-glucan-trained macrophages from mice with a myeloid-specific deletion of the phosphatase SHIP-1 (LysMΔSHIP-1) showed enhanced proinflammatory cytokine production in response to lipopolysaccharide. Following β-glucan training, SHIP-1-deficient macrophages exhibited increased phosphorylation of Akt and mTOR targets, correlating with augmented glycolytic metabolism. Enhanced training in the absence of SHIP-1 relied on histone methylation and acetylation. Trained LysMΔSHIP-1 mice produced increased amounts of proinflammatory cytokines upon rechallenge in vivo and were better protected against Candida albicans infection compared with control littermates. Pharmacological inhibition of SHIP-1 enhanced trained immunity against Candida infection in mouse macrophages and human peripheral blood mononuclear cells. Our data establish proof of concept for improvement of trained immunity and a strategy to achieve it by targeting SHIP-1.
Rationale:
Recurrent wheezing in children represents a severe public health concern. Wheezing attacks (WA), mainly associated with viral infections, lack effective preventive therapies.
Objectives:
To evaluate the efficacy and safety of mucosal sublingual immunotherapy based on whole inactivated bacteria (MV130) in preventing WA in children.
Methods:
A Phase 3 randomized, double-blind, placebo-controlled, parallel-group trial including a cohort of 120 children <3 years old with ⩾3 WA during the previous year was conducted. Children with a positive skin test to common aeroallergens in the area where the clinical trial was performed were excluded from the trial. Subjects received MV130 or placebo daily for 6 months. The primary endpoint was the number of WA within 1 year after the first dose comparing MV130 and placebo.
Measurements and Main Results:
There was a significant lower number of WA in MV130 versus the placebo group, 3.0 (interquartile range [IQR], 2.0–4.0) versus 5.0 (IQR, 3.0–7.0) (
P
< 0.001). As secondary outcomes, a decrease in the duration of WA and a reduction in symptoms and medication scores in the MV130 versus placebo group were found. No adverse events were reported related to the active treatment.
Conclusions:
Mucosal bacterial immunotherapy with MV130 shows safety and clinical efficacy against recurrent WA in children.Clinical trial registered with
www.clinicaltrials.gov
(NCT 01734811).
Summary
MV130 is an inactivated polybacterial mucosal vaccine that confers protection to patients against recurrent respiratory infections, including those of viral etiology. However, its mechanism of action remains poorly understood. Here, we find that intranasal prophylaxis with MV130 modulates the lung immune landscape and provides long-term heterologous protection against viral respiratory infections in mice. Intranasal administration of MV130 provides protection against systemic candidiasis in wild-type and
Rag1
-deficient mice lacking functional lymphocytes, indicative of innate immune-mediated protection. Moreover, pharmacological inhibition of trained immunity with metformin abrogates the protection conferred by MV130 against influenza A virus respiratory infection. MV130 induces reprogramming of both mouse bone marrow progenitor cells and
in vitro
human monocytes, promoting an enhanced cytokine production that relies on a metabolic shift. Our results unveil that the mucosal administration of a fully inactivated bacterial vaccine provides protection against viral infections by a mechanism associated with the induction of trained immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.