A computational tool able to perform a fast analysis of hybrid rocket engines is presented, describing briefly the mathematical and physical models used. Validation of the code is also shown: 16 different static firing tests available in the open literature are used to compare measured operational parameters such as chamber pressure, thrust, and specific impulse with the code’s output. The purpose of the program is to perform rapid evaluation and assessment on a possible first design of hybrid rockets, without relying on computationally expensive simulations or onerous experimental tests. The validated program considers as benchmark and study case the design of a liquid-oxygen/paraffin hybrid rocket engine to be used as the upper stage of a small launcher derived from VEGA building blocks. A full-factorial parametric analysis is performed for both pressure-fed and pump-fed systems to find a configuration that delivers the equivalent total impulse of a VEGA-like launcher third and fourth stage as a first evaluation. This parametric analysis is also useful to highlight how the oxidizer injection system, the fuel grain design, and the nozzle features affect the performance of the rocket.
This paper presents a streamlined design procedure for water-based noise suppression systems that are applicable to multiple classes of rocket engines. A newly adapted steady quasi-one-dimensional two-phase model is employed to predict the evolution of the exhaust gases interacting with water droplets. Such a model is embedded into a two-step optimization procedure with the objective of finding the most efficient combination of the suppressor operative parameters. This information is then used to design the hardware of the system, which consists in a set of injectors, with the task of producing atomized water jets directed towards the exhaust gases, and a toroidal manifold, with the task of delivering water to the injectors at uniform conditions of pressure and velocity. Finally, the proposed design procedure is applied to a 15 kN thrust class oxygen/methane liquid rocket engine. Technical specifications of the resulting water-based noise suppression system are provided along with a detailed three-dimensional CAD model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.