Earthquakes are one of the most overwhelming types of natural hazards. As a result, successfully handling the situation they create is crucial. Due to earthquakes, many lives can be lost, alongside devastating impacts to the economy. The ability to forecast earthquakes is one of the biggest issues in geoscience. Machine learning technology can play a vital role in the field of geoscience for forecasting earthquakes. We aim to develop a method for forecasting the magnitude range of earthquakes using machine learning classifier algorithms. Three different ranges have been categorized: fatal earthquake; moderate earthquake; and mild earthquake. In order to distinguish between these classifications, seven different machine learning classifier algorithms have been used for building the model. To train the model, six different datasets of India and regions nearby to India have been used. The Bayes Net, Random Tree, Simple Logistic, Random Forest, Logistic Model Tree (LMT), ZeroR and Logistic Regression algorithms have been applied to each dataset. All of the models have been developed using the Weka tool and the results have been noted. It was observed that Simple Logistic and LMT classifiers performed well in each case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.