The objectives of this work were estimate the leaf area of squash ‘Brasileirinha’ by linear dimensions of the leaves and check models available in the literature. An experiment was conducted in the 2015/16 sowing season. Were collected 500 leaves and in each one, were measured the length (L), width (W) and length×width product (LW) and determined the real leaf area (LA). Then, 400 leaves were separated to generate models of the leaf area (LA) as a function of linear dimension (L, W or LW) of squash. The remaining 100 leaves were used for the validation of models. A second experiment was conducted in the 2016/17 sowing season. Were collected 250 leaves, used only for the validation of the models of the first experiment. There is collinearity between L and W and, therefore, models using the LW product are not recommended. The model LA=0.5482W2 + 0.0680W (R²=0.9867) is adequate for leaf area estimation of squash ‘Brasileirinha’.
The objective of this research was to determine the optimal plot size and the number of replications to evaluate the fresh matter of ryegrass sown to haul. Twenty uniformity trials were conducted, each trial with 16 basic experimental units (BEU) of 0.5 m2. At 117, 118 and 119 days after sowing, the fresh matter of ryegrass in the BEUs of 5, 10 and 5 uniformity trials, respectively, were determined. The optimal plot size was determined by the maximum curvature method of the variation coefficient model. Next, the replications number was determined in scenarios formed by combinations of i treatments (i = 3, 4, ... 50) and d minimum differences between means of treatments to be detected as significant at 5% of probability by the Tukey test, expressed in experimental mean percentage (d = 10, 11, ... 20%). The optimal plot size to determine the fresh matter of ryegrass seeded at the haul is 2.19 m2, with a variation coefficient of 9.79%. To identify as significant at 5% probability, by the Tukey test, differences between treatment means of 20%, are required five, six, seven and eight replications, respectively, in ryegrass experiments with up to 5, 10, 20 and 50 treatments.
The objective of this study was to estimate the leaf area of triticale in function of linear dimensions from flags and other (non-flag) leaves. An experiment was conducted with the IPR111 cultivar in the 2016 agricultural year. At 93 days after sowing, 400 leaves were collected in order to generate the mathematical models of leaf area estimation in function of linear leaf dimensions. A total of 200 leaves were collected at 106 days after sowing in order to validate the models. In each of the 600 leaves, the length (L) and the width (W) were measured, and the product of length times width (L×W) and the ratio between length and width (L/W) were estimated. Afterwards, the leaves were digitized and the real leaf area determined by means of digital images. Linear, quadratic and power models were generated and validated for the estimation of the real leaf area (Y). The morphology of flag and other (non-flag) leaves is distinct and, thus, leaf area estimation models should be generated for each leaf type. In triticale, the most precise models of leaf area estimation are those that use L×W as the explanatory variable.
Strawberry is an economically and socially important crop in several regions worldwide. Thus, studies that provide information on topics in strawberry growth are important and must be constantly updated. The aims of this study were to fit a logistic growth model to describe strawberry fruit production and to estimate the partial derivatives of the fitted model in order to estimate and interpret the critical points, in addition to using multivariate analyses. To do this, data on 16 treatments [combinations of two cultivars (Albion and Camarosa), two origins (national and imported), and four mixed organic substrates (70% crushed sugar cane residue + 30% organic compost, 70% crushed sugar cane residue + 30% commercial substrate, 70% burnt rice husk + 30% organic compost, and 70% burnt rice husk + 30% commercial substrate)] conducted in a randomized complete block design (RCBD) with four replicates were used. A logistic model was fitted to the accumulated fruit production stratified by treatment and replication. Partial derivatives related to the accumulated thermal sum were estimated in order to quantify the critical points of the model. Subsequently, a principal component analysis was performed. The results show that the use of growth models substantially increases the inferences that can be made about crop growth, and the multivariate analysis summarizes this information, simplifying its interpretation. Approaches such as those carried out in this study are still rarely used, but, compared to simpler models, they increase the amount of inferences that can be made and provide greater elucidation of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.