Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-β, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.
Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells ( ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α-Na,K-ATPase construct bearing an S18A (α-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.
The absence of Klotho (KL) from mice causes the development of disorders associated with human aging and decreased longevity, whereas increased expression prolongs lifespan. With age, KL protein levels decrease, and keeping levels consistent may promote healthier aging and be disease-modifying. Using the KL promoter to drive expression of luciferase, we conducted a high-throughput screen to identify compounds that activate KL transcription. Hits were identified as compounds that elevated luciferase expression at least 30%. Following validation for dose-dependent activation and lack of cytotoxicity, hit compounds were evaluated further in vitro by incubation with opossum kidney and Z310 rat choroid plexus cells, which express KL endogenously. All compounds elevated KL protein compared with control. To determine whether increased protein resulted in an in vitro functional change, we assayed FGF23 (fibroblast growth factor 23) signalling. Compounds G–I augmented ERK (extracellular-signal-regulated kinase) phosphorylation in FGFR (fibroblast growth factor receptor)-transfected cells, whereas co-transfection with KL siRNA (small interfering RNA) blocked the effect. These compounds will be useful tools to allow insight into the mechanisms of KL regulation. Further optimization will provide pharmacological tools for in vivo studies of KL.
The alveolar epithelium secretes cytokines and chemokines that recruit immune cells to the lungs, which is essential for fighting infections but in excess can promote lung injury. Overexpression of FXYD5, a tissue-specific regulator of the Na,K-ATPase, in mice, impairs the alveolo-epithelial barrier, and FXYD5 overexpression in renal cells increases C-C chemokine ligand-2 (CCL2) secretion in response to lipopolysaccharide (LPS). The aim of this study was to determine whether FXYD5 contributes to the lung inflammation and injury. Exposure of alveolar epithelial cells (AEC) to LPS increased FXYD5 levels at the plasma membrane, and FXYD5 silencing prevented both the activation of NF-κB and the secretion of cytokines in response to LPS. Intratracheal instillation of LPS into mice increased FXYD5 levels in the lung. FXYD5 overexpression increased the recruitment of interstitial macrophages and classical monocytes to the lung in response to LPS. FXYD5 silencing decreased CCL2 levels, number of cells, and protein concentration in bronchoalveolar lavage fluid (BALF) after LPS treatment, indicating that FXYD5 is required for the NF-κB-stimulated epithelial production of CCL2, the influx of immune cells, and the increase in alveolo-epithelial permeability in response to LPS. Silencing of FXYD5 also prevented the activation of NF-κB and cytokine secretion in response to interferon α and TNF-α, suggesting that pro-inflammatory effects of FXYD5 are not limited to the LPS-induced pathway. Furthermore, in the absence of other stimuli, FXYD5 overexpression in AEC activated NF-κB and increased cytokine production, while FXYD5 overexpression in mice increased cytokine levels in BALF, indicating that FXYD5 is sufficient to induce the NF-κB-stimulated cytokine secretion by the alveolar epithelium. The FXYD5 overexpression also increased cell counts in BALF, which was prevented by silencing the CCL2 receptor (CCR2), or by treating mice with a CCR2-blocking antibody, confirming that FXYD5-induced CCL2 production leads to the recruitment of monocytes to the lung. Taken together, the data demonstrate that FXYD5 is a key contributor to inflammatory lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.