Biovolatilisation of arsenic as their arsines in the form of AsH(3), and mono-, di and trimethylarsine has often been determined under laboratory conditions. Although environmental point sources such as landfill sites or hot springs have been characterised, only limited knowledge is available on how widespread the formation of volatile methylated arsenic compounds are in the environment. Here we studied the atmospheric stability of the different arsines and quantified their oxidation products in atmospheric particulate matter (PM(10)) in two locations in Argentina. The atmospheric half-life of the arsines range from 19 weeks for AsH(3) to 2 d for trimethylarsine (TMAs) at 20 degrees C in the dark, while during simulated daytime conditions the stability is reduced for all arsines and in particular for the methylated arsines by three orders of magnitude which suggests that TMAs can only be dispersed at night. At both locations the arsenic concentration was in all samples below 1 ng As m(-3), which is considered as rural background for arsenic. The oxidation products, i.e. methylarsonate (MA), dimethylarsinate (DMA) and trimethylarsine oxide (TMAO) were identified by using HPLC-ICP-MS/ES-MS in more than 90% of the 49 PM(10) samples taken from 8 sampling points at the two geographically different locations. TMAO was the predominate organoarsenicals in both locations (66 and 69%, respectively) while DMA was determined to be between 13 and 19% of all organoarsenicals at the two locations. The concentration of the organoarsenicals ranged from 4 to 60 pg As as TMAO m(-3), while the maximum concentration for DMA and MA were 16 and 6 pg As m(-3), respectively. No difference in terms of the concentration or distribution of the organoarsenicals in the PM(10) samples was identified as significant. Since the two locations were different in climate and industrial impact and sampled in different seasons, these data suggest that methylated arsenicals do occur as background chemicals in the environment. Due to the low atmospheric stability of the methylated arsines, it is suggested that biovolatilization of arsenic as methylated arsines is a widespread phenomenon. More studies however are necessary to identify the major sources and determine the flux of the volatilization process in order to determine whether or not the process has environmental significance.
We prepared synthetic hydroxyapatite [HAP; Ca5(PO4)(3-x)(CO3)x(OH)(1+x) (x = 0.3)] and then investigated this material's ability to remove trivalent antimony [Sb(III)] from water. The HAP was characterized by X-ray diffraction analysis, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. The sorption of Sb(III) to HAP was measured over an Sb(III) concentration range of 0.05-50 mg L(-1), at constant ionic strength (I = 0.01 mol dm(-3)) in equilibrated aqueous suspensions (34 g dm(-3)) for 5 < pH < 8 in vessels that were closed to the atmosphere. Under these conditions, we found that HAP particles were enriched in Ca after incongruent dissolution of the solid. More than 95% of the Sb(III) in solution adsorbed to the solid-phase HAP in <30 min. The equilibrium distribution of Sb(III) (solid vs liquid phase) was characterized by a Langmuir model with gamma(max) = 6.7 +/- 0.1 x 10(-8) mol m(-2) (1.4 +/- 0.2 x 10(-4) mol dm(-3) g(-1)) and K(ads) = 1.5 +/- 0.2 x 10(3) dm3 mol(-1). As Sb adsorption occurred, the pH of the isoelectric point (pH(iep)) of the HAP suspensions declined from 7.7 to 6.9. This finding supports the idea that the negative surface potential of the HAP increased due to the adsorption of Sb as a charged species. The decline in pH(iep) during Sb adsorption plus the thermodynamic description of the Sb(III)-HAP-H2O system suggest likely surface reactions for the interaction of Sb with HAP. We discuss the efficiency of Sb removal from water by HAP in the context of phosphate enrichment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.