Ten microsatellite markers were developed for Robinsonia (Asteraceae), a genus endemic to the Juan Fernández Archipelago, Chile. Polymorphisms of these markers were tested using one population each of R. evenia, R. gayana, and R. gracilis. The number of alleles for these markers ranged from 2 to 17 per locus, and expected heterozygosity ranged from 0 to 0.847 by population. A significant deviation from Hardy–Weinberg equilibrium was observed in zero to two markers in each population, and no significant linkage disequilibrium between markers was detected. The markers reported here would be useful for evolutionary studies and conservation strategies in Robinsonia.
The assessment of mature urban tree vitality using physiological measurements is still in its infancy. Chlorophyll fluorescence is a method for assessing tree vitality that has potential for use in urban environments, particularly on trunk bark, which is easy to access from the ground.Here we describe how we compared bark and leaf fluorescence in a variety of street and park trees (Ficus macrophylla Pers., Platanus × acerifolia (Aiton) Willd., and Ulmus parvifolia Jacq.) with pre-dawn water potential as a way of determining the cause of potential physiological stress in the summer of 2012. Statistical relationships were observed between bark chlorophyll fluorescence and pre-dawn water potential in Ficus macrophylla and Platanus × acerifolia, but were not as consistent in Ulmus parvifolia. In addition, bark and leaf chlorophyll fluorescence were compared with an urban visual vitality index both in autumn 2011 and summer 2012. In this case statistical relationships between bark chlorophyll fluorescence values and urban tree visual vitality were almost non-existent in the Ficus macrophylla and Platanus × acerifolia trees, however, statistical relationships were significant between bark chlorophyll fluorescence and the urban tree vitality index in Ulmus parvifolia. Bark chlorophyll fluorescence may become a useful tool for measuring physiological stress in trees, but further work needs to be undertaken to clarify and better understand the varying responses of different tree species. glucose contents of trees, cambial electrical resistance at breast height, chlorophyll content of leaves, and leaf gas exchange are some examples of physiological tests used to estimate plant vitality [6]. Measuring leaf water potential (Ψ w ) is the most common parameter used to assess the water status of plants. When a plant is dehydrated, its water potential decreases [7]. Leaf, and sometimes stem, water potentials are measured in a pressure chamber. The pressure is increased around a leaf until xylem sap appears at the end of the shoot where the cut end is exposed to atmospheric pressure [8]. The pressure exerted in order for the xylem sap to come out of the stem represents the negative pressure existing in the intact stem [8]. It is believed that the amount of pressure required to force water out of leaf cells into xylem is a function of the water potential of leaf cells [8]. Pre-dawn water potentials measure the minimum level of stress that a plant is experiencing, while midday levels indicate the maximum level of water stress [9].Since all the raw materials and energy necessary to obtain optimal wood formation are primarily obtained from the reduction of carbon dioxide, photosynthesis is also an essential physiological process in tree growth [10]. Chlorophyll fluorescence measurement is therefore another an important physiological tool, which has been used to detect and quantify plant responses to stress by giving information of the efficiency of the leaf photosynthetic system [11][12][13]. However aside from a few studies, the mos...
Oceanic islands are vulnerable ecosystems and their flora has been under pressure since the arrival of the first humans. Human activities and both deliberately and inadvertently introduced biota have had and continue to have a severe impact on island endemic plants. The number of alien plants has increased nearly linearly on many islands, perhaps resulting in extinction‐based saturation of island floras. Here, we provide evidence for such a scenario in Alejandro Selkirk, Robinson Crusoe Islands (Archipelago Juan Fernández, Chile). We compared species richness and species composition of historical vegetation samples from 1917 with recent ones from 2011. Changes in species’ relative occurrence frequency were related to their taxonomic affiliation, dispersal mode, distribution status, and humidity and temperature preferences. While total species richness of vascular plants remained relatively similar, species composition changed significantly. Plants endemic to the Robinson Crusoe Islands declined, exotic species increased substantially within the period of ca. 100 years. Further, the relative occurrence frequency of plants with preferences for very warm and humid climate decreased, while the opposite was found for plants preferring drier and colder environments. Potential drivers responsible for this dramatic shift in the vegetation within only one century might have been the large goat population affecting especially small populations of endemic plants and climatic changes. Taking into account a substantial extinction debt, we expect further shifts in the vegetation of this small oceanic island toward alien plants. This would have significant negative consequences on global biodiversity, considering that island floras contribute substantially to global plant species richness due to their high proportion of endemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.