One football season of sub-concussive head blows has been shown to be associated with subclinical white matter (WM) changes on diffusion tensor imaging (DTI). Prior research analyses of helmet-based impact metrics using mean and peak linear and rotational acceleration showed relatively weak correlations to these WM changes; however, these analyses failed to account for the emerging concept that neuronal vulnerability to successive hits is inversely related to the time between hits (TBH). To develop a novel method for quantifying the cumulative effects of sub-concussive head blows during a single season of collegiate football by weighting helmet-based impact measures for time between helmet impacts. We further aim to compare correlations to changes in DTI after one season of collegiate football using weighted cumulative helmet-based impact measures to correlations using non-weighted cumulative helmet-based impact measures and non-cumulative measures. We performed a secondary analysis of DTI and helmet impact data collected on ten Division III collegiate football players during the 2011 season. All subjects underwent diffusion MR imaging before the start of the football season and within 1 week of the end of the football season. Helmet impacts were recorded at each practice and game using helmet-mounted accelerometers, which computed five helmet-based impact measures for each hit: linear acceleration (LA), rotational acceleration (RA), Gadd Severity Index (GSI), Head Injury Criterion (HIC), and Head Impact Technology severity profile (HITsp). All helmet-based impact measures were analyzed using five methods of summary: peak and mean (non-cumulative measures), season sum-totals (cumulative unweighted measures), and season sum-totals weighted for time between hits (TBH), the interval of time from hit to post-season DTI assessment (TUA), and both TBH and TUA combined. Summarized helmet-based impact measures were correlated to statistically significant changes in fractional anisotropy (FA) using bivariate and multivariable correlation analyses. The resulting R values were averaged in each of the five summary method groups and compared using one-way ANOVA followed by Tukey post hoc tests for multiple comparisons. Total head hits for the season ranged from 431 to 1850. None of the athletes suffered a clinically evident concussion during the study period. The mean R value for the correlations using cumulative helmet-based impact measures weighted for both TUA and TBH combined (0.51 ± 0.03) was significantly greater than the mean R value for correlations using non-cumulative HIMs (vs. 0.19 ± 0.04, p< 0.0001), unweighted cumulative helmet-based impact measures (vs. 0.27 + 0.03, p < 0.0001), and cumulative helmet-based impact measures weighted for TBH alone (vs. 0.34 ± 0.02, p < 0.001). R values for weighted cumulative helmet-based impact measures ranged from 0.32 to 0.77, with 60% of correlations being statistically significant. Cumulative GSI weighted for TBH and TUA explained 77% of the variance in the percent of white ma...
Repetitive head impacts (RHI) are a growing concern due to their possible neurocognitive effects, with research showing a season of RHI produce white matter (WM) changes seen on neuroimaging. We conducted a secondary analysis of diffusion tensor imaging (DTI) data for 28 contact athletes to compare WM changes. We collected pre-season and post-season DTI scans for each subject, approximately 3 months apart. We collected helmet data for the athletes, which we correlated with DTI data. We adapted the SPatial REgression Analysis of DTI (SPREAD) algorithm to conduct subjectspecific longitudinal DTI analysis, and developed global inferential tools using functional norms and a novel robust p value combination test. At the individual level, most detected injured regions (93.3%) were associated with decreased FA values. Using meta-analysis techniques to combine injured regions across subjects, we found the combined injured region at the group level occupied the entire WM skeleton, suggesting the WM damage location is subject-specific. Several subject-specific functional summaries of SPREAD-detected WM change, e.g., the L ∞ norm, significantly correlated with helmet impact measures, e.g. cumulative unweighted rotational acceleration (adjusted p = 0.0049), time between hits rotational acceleration (adjusted p value 0.0101), and time until DTI rotational acceleration (adjusted p = 0.0084), suggesting RHIs lead to WM changes. Sport-related concussions and repetitive head impacts (RHI) incurred during sports have emerged as important foci of brain injury research with the increased awareness and improved understanding of these injuries' effects on neurocognitive function. RHI are broadly defined as any direct or indirect hit that exerts a force on the brain that may or may not cause a clinically diagnosed concussion 1. RHI occur frequently during contact and collision sports at all levels of play including youth, collegiate, and professional competitions. Both animal and human studies have shown acute changes in brain structure and function after RHI that are indicative of axonal injury 2-10. This understanding of the acute impact on the brain has led to questions about RHI's potential long-term neurocognitive effects. The direct connection between RHIs, acute brain injury, and their possible long-term effects on brain structure and neurocognitive function are difficult to confirm with retrospective research. Montenigro and colleagues showed a retrospective survey metric for head impact exposure was strongly associated with behavioral and cognitive dysfunction later in life 1. In addition, post-mortem studies of chronic traumatic encephalopathy (CTE) have described RHI as a necessary but not sufficient risk factor, which suggests RHI lead to biologic dysregulation and clinical symptoms 11. Despite this retrospective evidence, RHI causing CTE and other neurodegenerative
IMPORTANCE Symptom-based methods of concussion diagnosis in contact sports result in underdiagnosis and repeated head injury exposure, increasing the risk of long-term disability. Measures of neuro-ophthalmologic (NO) function have the potential to serve as objective aids, but their diagnostic utility is unknown. OBJECTIVE To identify NO measures that accurately differentiate athletes with and without concussion. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted among athletes with and without concussion who were aged 17 to 22 years between 2016 and 2017. Eye movements and cognitive function were measured a median of 19 days after injury among patients who had an injury meeting the study definition of concussion while playing a sport (retrospectively selected from a concussion clinic), then compared with a control group of participants without concussion (enrolled from 104 noncontact collegiate athlete volunteers without prior head injury). Data analysis was conducted from November 2019 through May 2020. EXPOSURE Concussion. MAIN OUTCOMES AND MEASURES Classification accuracy of clinically important discriminator eye-tracking (ET) metrics. Participants' eye movements were evaluated with a 12-minute ET procedure, yielding 42 metrics related to smooth pursuit eye movement (SPEM), saccades, dynamic visual acuity, and reaction time. Clinically important discriminator metrics were defined as those with significantly different group differences and area under the receiver operator characteristic curves (AUROCs) of at least 0.70. RESULTS A total of 34 participants with concussions (mean [SD] age, 19.7 [2.4] years; 20 [63%] men) and 54 participants without concussions (mean [SD] age, 20.8 [2.2] years; 31 [57%] men) completed the study. Six ET metrics (ie, simple reaction time, discriminate reaction time, discriminate visual reaction speed, choice visual reaction speed, and reaction time on 2 measures of dynamic visual acuity 2) were found to be clinically important; all were measures of reaction time, and none were related to SPEM. Combined, these 6 metrics had an AUROC of 0.90 (95% CI, 0.80-0.99), a sensitivity of 77.8%, and a specificity of 92.6%. The 6 metrics remained significant on sensitivity testing. CONCLUSIONS AND RELEVANCE In this study, ET measures of slowed visual reaction time had high classification accuracy for concussion. Accurate, objective measures of NO function have the potential to improve concussion recognition and reduce the disability associated with underdiagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.