One of the fastest growing fisheries in the UK is the king scallop (Pecten maximus L.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resembling Rickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from “Candidatus Endonucleobacter bathymodioli” and 95% with Endozoicomonas species. In situ hybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences from Endozoicomonas spp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCE Molluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of an Endozoicomonas-like organism (ELO) associated with an important commercial scallop species.
BackgroundMurine norovirus (MNV) is the most common gastrointestinal pathogen of research mice and can alter research outcomes in biomedical mouse models of inflammatory bowel disease (IBD). Despite indications that an altered microbiota is a risk factor for IBD, the response of the murine intestinal microbiota to MNV infection has not been examined. Microbiota disruption caused by MNV infection could introduce the confounding effects observed in research experiments. Therefore, this study investigated the effects of MNV infection on the intestinal microbiota of wild-type mice.ResultsThe composition of the intestinal microbiota was assessed over time in both outbred Swiss Webster and inbred C57BL/6 mice following MNV infection. Mice were infected with both persistent and non-persistent MNV strains and tissue-associated or fecal-associated microbiota was analyzed by 16S rRNA-encoding gene pyrosequencing. Analysis of intestinal bacterial communities in infected mice at the phylum and family level showed no major differences to uninfected controls, both in tissue-associated samples and feces, and also over time following infection, demonstrating that the intestinal microbiota of wild-type mice is highly resistant to disruption following MNV infection.ConclusionsThis is the first study to describe the intestinal microbiota following MNV infection and demonstrates that acute or persistent MNV infection is not associated with major disruptions of microbial communities in Swiss Webster and C57BL/6 mice.
The Lyme Bay marine protected area (MPA) hosts a valuable population of king scallop Pecten maximus L. Recently, an Endozoicomonas-like organism (ELO), infecting host gill epithelial tissue, was associated with king scallop mass mortality events within the Lyme Bay MPA. Currently, very little is known about its transmission and survival outside the host. In this investigation, animals collected outside of reported mortality events showed high levels of ELO infection. Gill tissue disruption and the release of bacteria into the interlamellar space was seen histologically, suggesting shedding of ELO from host animals. To investigate pathogen survival outside the host, infected scallops were maintained in static water for a 24 h period, and then removed. Over the subsequent 8 d, water samples were collected and the quantity of ELO 16S rRNA transcript was measured by TaqMan TM quantitative PCR (qPCR). The 16S rRNA transcript quantity was stable outside the host for 6 d before bacteria survival declined 2 logs (7.9 × 10 8 16S rRNA to 2.3 × 10 6 transcripts), suggesting that ELO can survive independently outside the host organism. The ELO-specific qPCR probe can therefore be used in future field studies of ELO prevalence within the environment and fauna of the Lyme Bay MPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.