Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues
Summary Background Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. Methods We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33 332 cases and 27 888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples. Findings SNPs at four loci surpassed the cutoff for genome-wide significance (p<5×10−8) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers. Interpretation Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause. Funding National Institute of Mental Health.
The distribution and subcellular localization of tubulin and MAP2 in brain tissue were analyzed by immunocytochemistry with monoclonal hybridoma antibodies prepared against Chinese hamster brain tubulin and MAP2. We examined three anti-tubulin hybridoma antibodies (Tu3B, Tu9B, Tu12) specific for beta-tubulin, and two anti-MAP2 hybridoma antibodies (AP9,AP13). The specificity of each of the monoclonal antibodies was characterized by staining nitrocellulose electrophoretic blots of SDS-polyacrylamide gels of whole brain or hippocampal extracts. Each hybridoma antibody bound only its respective antigen in these preparations. Polyclonal antisera against tubulin were also examined. Sections reacted with antisera against tubulin or monoclonal antibodies against beta-tubulin revealed a wide variety of stained cellular compartments. The reaction product was found to decorate dendritic and axonal microtubles in neurons; glial cells were also stained. MAP2 immunoreactivity was found only in neurons. In the case of one of the monoclonal antibodies (AP9), staining was preferentially associated with dendritic processes. However, light but significant staining of axonal processes was seen with AP13. Within dendrites, MAP2 was found associated with dendritic microtubules and postsynaptic densities (psd), both in shaft and spine synapses. In addition, strong immunoreactivity for MAP2 was found within the cytoplasm of dendritic spines. There was little or no immunoreactivity for tubulin in the spine cytoplasm, although the psd was stained. The localization of MAP2 in dendritic spines and in the psd suggests that this protein may have a biological role independent of its association with microtubules. The observations on differential staining of the hybridoma antibodies against MAP2 suggest that there may be distinct subtypes or states of MAP2 within neurons.
Anxiety disorders are among the most common psychiatric disorders in childhood. Nonetheless, theoretical knowledge of the development and maintenance of childhood anxiety disorders is still in its infancy. Recently, research has begun to investigate the influence of emotion regulation on anxiety disorders. Although a relation between anxiety disorders and emotion regulation difficulties has been demonstrated, little attention has been given to the question of why anxious individuals have difficulties regulating their emotions. The present review examines the evidence of the link between emotion regulation and anxiety. It also explores the unique contributions of attachment style and dysfunctional emotion regulation to the development of anxiety disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.