How neural correlates of movements are represented in the human brain is of ongoing interest and has been researched with invasive and non-invasive methods. In this study, we analyzed the encoding of single upper limb movements in the time-domain of low-frequency electroencephalography (EEG) signals. Fifteen healthy subjects executed and imagined six different sustained upper limb movements. We classified these six movements and a rest class and obtained significant average classification accuracies of 55% (movement vs movement) and 87% (movement vs rest) for executed movements, and 27% and 73%, respectively, for imagined movements. Furthermore, we analyzed the classifier patterns in the source space and located the brain areas conveying discriminative movement information. The classifier patterns indicate that mainly premotor areas, primary motor cortex, somatosensory cortex and posterior parietal cortex convey discriminative movement information. The decoding of single upper limb movements is specially interesting in the context of a more natural non-invasive control of e.g., a motor neuroprosthesis or a robotic arm in highly motor disabled persons.
We could show that it is possible to discriminate three executed reach-and-grasp actions prominent in people's everyday use from non-invasive EEG. Underlying neural correlates showed significant differences between all tested conditions. These findings will eventually contribute to our attempt of controlling a neuroprosthesis in a natural and intuitive way, which could ultimately benefit motor impaired end users in their daily life actions.
We show that persons with spinal cord injury (SCI) retain decodable neural correlates of attempted arm and hand movements. We investigated hand open, palmar grasp, lateral grasp, pronation, and supination in 10 persons with cervical SCI. Discriminative movement information was provided by the time-domain of low-frequency electroencephalography (EEG) signals. Based on these signals, we obtained a maximum average classification accuracy of 45% (chance level was 20%) with respect to the five investigated classes. Pattern analysis indicates central motor areas as the origin of the discriminative signals. Furthermore, we introduce a proof-of-concept to classify movement attempts online in a closed loop, and tested it on a person with cervical SCI. We achieved here a modest classification performance of 68.4% with respect to palmar grasp vs hand open (chance level 50%).
Using low-frequency time-domain electroencephalographic (EEG) signals we show, for the same type of upper limb movement, that goal-directed movements have different neural correlates than movements without a particular goal. In a reach-and-touch task, we explored the differences in the movement-related cortical potentials (MRCPs) between goal-directed and non-goal-directed movements. We evaluated if the detection of movement intention was influenced by the goal-directedness of the movement. In a single-trial classification procedure we found that classification accuracies are enhanced if there is a goal-directed movement in mind. Furthermore, by using the classifier patterns and estimating the corresponding brain sources, we show the importance of motor areas and the additional involvement of the posterior parietal lobule in the discrimination between goal-directed movements and non-goal-directed movements. We discuss next the potential contribution of our results on goal-directed movements to a more reliable brain-computer interface (BCI) control that facilitates recovery in spinal-cord injured or stroke end-users.
A brain-computer interface (BCI) can help to overcome movement deficits in persons with spinal-cord injury. Ideally, such a BCI detects detailed movement imaginations, i.e., trajectories, and transforms them into a control signal for a neuroprosthesis or a robotic arm restoring movement. Robotic arms have already been controlled successfully by means of invasive recording techniques, and executed movements have been reconstructed using noninvasive decoding techniques. However, it is unclear if detailed imagined movements can be decoded noninvasively using electroencephalography (EEG). We made progress toward imagined movement decoding and successfully classified horizontal and vertical imagined rhythmic movements of the right arm in healthy subjects using EEG. Notably, we used an experimental design which avoided muscle and eye movements to prevent classification results being affected. To classify imagined movements of the same limb, we decoded the movement trajectories and correlated them with assumed movement trajectories (horizontal and vertical). We then assigned the decoded movements to the assumed movements with the higher correlation. To train the decoder, we applied partial least squares, which allowed us to interpret the classifier weights although channels were highly correlated. To conclude, we showed the classification of imagined movements of one limb in two different movement planes in seven out of nine subjects. Furthermore, we found a strong involvement of the supplementary motor area. Finally, as our classifier was based on the decoding approach, we indirectly showed the decoding of imagined movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.