Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions.
<p class="AMSmaintext">The goal of the present work is to evaluate mechanical properties and to analyse the microstructure of 316L stainless steel produced by Laser Powder Bed Fusion (L-PBF) follow by rolling with different thickness reduction under ambient and cryogenic conditions. The samples before rolling were heat treated. The static tensile test was realized at ambient and cryogenic (77K) conditions. The L-PBF powder metal production technology approved that is a key technology in the AM area, especially for metal powder materials. Mechanical properties tested at 298K and 77K shows that the application of various thermo-deformation rolling conditions increases of strength properties. Achieved mechanical properties are comparable to conventional bulk materials. The strength properties after the rolling under ambient and cryogenic conditions were significantly increased.<strong></strong></p>
In this paper is evaluated workability of rolled aluminium alloy based AIMgSi. Static tension test was used for obtained the mechanical properties, such as tensile strength, yield strength, elongation, the strain hardening exponent and coefficient of surface anisotropy. Rolled samples used for a tensile test were taken in three different directions, namely in the direction of rolling, in 45 ° and 90° direction. The result is an consideration of suitability of the material for stamping technology. For measurement of the elongation, variations in thickness and width in real-time was used method called videoextensometry. To obtain deforming maps and left side of forming limit diagrams (FLD) was applied digital correlation method (DIC).
Efficient machining using wire electrical discharge machining (WEDM) technology is a compromise between cutting speed and resulting surface quality. Typical morphology of the surface machined by WEDM shows a plenty of craters caused by electrospark discharges produced during the cutting process. This work is focused on assessing the impact of machine setting parameters on quantitative and qualitative evaluation of the workpiece surface of aluminium alloy AlZn6Mg2Cu. Using metallography, the surface effects arisen during the process of wire spark erosion on cross-sections of preparations were studied. Using local spot EDX microanalysis, the chemical composition of the surfaces of the samples was studied. The attention was also paid to the highest height of profile of the craters, which were studied using 3D filtered images.
This paper is focused on the evaluation of formability of heat resistant steel type 9Cr-1Mo by laboratory numerical simulationhot compression test confirmed by laboratory hot compression test. The 9Cr-1Mo steel represents modern 9%Cr tempered martensitic steel for high temperature applications in advanced thermal power plants. Numerical simulations were computed in software Deform 3D for five proposed sample shapes. On the base of normalized Cockcroft-Latham criterion (nCL), indicating the material damage during deformation, the sample type "tapered roller with four axial notches" was found to be the most suitable for hot workability evaluation. On base of simulations, it is also evaluated the temperature range of the workability of 9Cr-1Mo. The interval of good workability according to the nCL criteria is in the temperature range from 650 to 950 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.