In diagnostic radiology, medical-grade monochrome displays are usually recommended because of their higher luminance. Standard color displays can be used as a less expensive alternative, but have a lower luminance. The aim of the present study was to compare image quality for these two types of displays. Images of a CDRAD contrast-detail phantom were read by four radiologists using a 2-megapixel (MP) color display (143 cd/m 2 maximum luminance) as well as 2-MP (295 cd/m 2 ) and 3-MP monochrome displays. Thirty lumbar spine radiographs were also read by four radiologists using the color and the 2-MP monochrome display in a visual grading analysis (VGA). Very small differences were found between the displays when reading the CDRAD images. The VGA scores were j0.28 for the color and j0.25 for the monochrome display (p=0.24; NS). It thus seems possible to use color displays in diagnostic radiology provided that grayscale adjustment is used.
The Commission of the European Communities (CEC) research project "Predictivity and optimisation in medical radiation protection" addressed fundamental operational limitations in existing radiation protection mechanisms. The first part of the project aimed at investigating (1) whether the CEC image quality criteria could be used for optimization of a radiographic process and (2) whether significant differences in image quality based on these criteria could be detected in a controlled project with well known physical and technical parameters. In the present study, chest radiographs on film were produced using healthy volunteers. Four physical/technical parameters were varied in a carefully controlled manner: tube voltage (102 kVp and 141 kVp), nominal speed class (160 and 320), maximum film density (1.3 and 1.8) and method of scatter reduction (grid (R=12) and air gap). The air kerma at the entrance surface was measured for all patients and the risk-related dose H(Golem), based on calculated organ-equivalent dose conversion coefficients and the measured entrance air kerma values, was calculated. Image quality was evaluated by a group of European expert radiologists using a modified version of the CEC quality criteria. For the two density levels, density level 1.8 was significantly better than 1.3 but at the cost of a higher patient radiation exposure. The correlation between the number of fulfilled quality criteria and H(Golem) was generally poor. An air gap technique resulted in lower doses than scatter reduction with a grid but provided comparable image quality. The criteria can be used to highlight optimum radiographic technique in terms of image quality and patient dose, although not unambiguously. A recommendation for good radiographic technique based on a compromise between image quality and risk-related radiation dose to the patient is to use 141 kVp, an air gap, a screen-film system with speed 320 and an optical density of 1.8.
A study was conducted to compare physical and clinical system performance in digital chest radiography. Four digital X-ray modalities, two storage-phosphor based systems and two generations of a CCD-based system, were evaluated in terms of both their imaging properties (determination of presampling MTF and DQE) and clinical image quality (grading of the reproduction of anatomical details of 23 healthy volunteers using both absolute and relative visual grading analysis). One of the two storage-phosphor systems performed best in both evaluations and the first generation of the CCD-based system was rated worst; however, the other two systems were ranked differently with the two methods. The newest CCD-based system yielded a higher clinical image quality than the second storage-phosphor system, although the latter presented a DQE substantially higher than the former. The results show that clinical performance cannot be predicted from determinations of DQE alone, and that a system with lower DQE, under the quantum-saturated conditions in chest radiography, can outperform a system with higher DQE if the image processing used on the former is more effective in presenting the information in the image to the radiologist.
Two generations of a CCD-based detector system with lens-based optical coupling for digital chest radiography were evaluated in terms of presampling MTF, NPS, NEQ, DQE, linearity in response, and SNR over the detector area. Measurements were performed over a wide exposure range and at several different beam qualities. Neither the presampling MTF nor the DQE showed any general strong beam quality dependence, whereas the NPS and NEQ did when compared at specific entrance air kerma values. The exposure dependency for the DQE was found to be considerable, with the detectors showing low DQE at low exposures, and higher DQE at higher exposures. It was found that the second generation has been substantially improved compared to its predecessor regarding all the relevant parameters. The DQE(0) at an entrance air kerma of 5 microGy increased from 9% to 15%, mainly due to a better system gain (including optical coupling efficiency and matching of the energy of the emitted light photons to the sensitivity of the CCD camera). The first generation of detectors was found to have problems with bad peripheral resolution [MTF(muN/2) <0.1]. This problem was nonexistent for the second generation for which uniform resolution has been obtained [MTF(muN/2)=0.3]. A theoretical calculation of the DQE of two model systems similar to the ones evaluated was also performed, and the results were comparable to the experimentally determined data at high exposures. The model shows that both systems suffer from low optical coupling efficiency due to the large demagnification used. The main conclusion is that although the second generation has been improved, there is still a problem with low system gain leading to relatively modest DQE values, especially at low exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.