We have examined the mechanism and functional significance of hemidesmosome disassembly during normal epithelial cell migration and squamous carcinoma invasion. Our findings indicate that a fraction of EGF receptor (EGF-R) combines with the hemidesmosomal integrin α6β4 in both normal and neoplastic keratinocytes. Activation of the EGF-R causes tyrosine phosphorylation of the β4 cytoplasmic domain and disruption of hemidesmosomes. The Src family kinase inhibitors PP1 and PP2 prevent tyrosine phosphorylation of β4 and disassembly of hemidesmosomes without interfering with the activation of EGF-R. Coimmunoprecipitation experiments indicate that Fyn and, to a lesser extent, Yes combine with α6β4. By contrast, Src and Lck do not associate with α6β4 to a significant extent. A dominant negative form of Fyn, but not Src, prevents tyrosine phosphorylation of β4 and disassembly of hemidesmosomes. These observations suggest that the EGF-R causes disassembly of hemidesmosomes by activating Fyn, which in turn phosphorylates the β4 cytoplasmic domain. Neoplastic cells expressing dominant negative Fyn display increased hemidesmosomes and migrate poorly in vitro in response to EGF. Furthermore, dominant negative Fyn decreases the ability of squamous carcinoma cells to invade through Matrigel in vitro and to form lung metastases following intravenous injection in nude mice. These results suggest that disruption of hemidesmosomes mediated by Fyn is a prerequisite for normal keratinocyte migration and squamous carcinoma invasion.
Invasive fungal rhinosinusitis is a potentially fatal infection that affects immunocompromised patients. Prognosis is generally poor despite aggressive medical and surgical treatments. We present the first reported case of invasive fungal sinusitis in a healthy 18-year-old male athlete who was taking anabolic androgenic steroids (AAS). The effects of excessive AAS use on the immune system are not fully understood, but there may be consequences at supraphysiological concentrations. This case demonstrates potential immunomodulatory effects of anabolic steroids and highlights a previously unknown cause of invasive fungal sinusitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.