Bisphenol A (BPA) is an industrial chemical used to make polymers including some used in food contact applications. Virtually complete presystemic clearance of orally administered BPA occurs in humans by metabolism to BPA-glucuronide (BPA-G), but some biomonitoring studies report low concentrations of free (parent) BPA in human blood and urine. Trace contamination of BPA from exogenous sources or hydrolysis of BPA-G to free BPA, either during or after biomonitoring specimen collection, may have contributed to the reported concentrations of free BPA. An analytical method for the determination of free BPA in human blood and urine was developed and validated in two independent laboratories, using the latest generation of high-performance liquid chromatography-tandem mass spectrometry instrumentation to ensure the desired high sensitivity and selectivity. The method was designed to account for and/or eliminate background contamination from all sources and demonstrated that contamination could occur from devices used for specimen collection or storage, as well as other sources. The method employed an internal standard (BPA-d(8)) and demonstrated accuracy and reproducibility in both matrices fortified with BPA or a surrogate analyte ((13)C-BPA) at a low quantitation limit (0.1-0.2 ng/mL). For validation, five replicate samples were analyzed to evaluate reproducibility. Importantly, it was demonstrated that the conditions of the method did not result in the hydrolysis of BPA-G to free BPA, another possible source of error in BPA analysis. Application of the principles defined by this method will be critical to assure valid analytical results in any future biomonitoring studies.
Replicate injection of calibration standards provides added benefits for an analytical measurement on instrument sensitivity compensation and relatively improved precision of results.
This publication describes a method for the determination of total bisphenol A (BPA and conjugated BPA) following enzyme hydrolysis and is intended as a companion to our previously developed analytical method for the determination of free BPA (the aglycone) in human blood and urine using high-performance liquid chromatography-tandem mass spectrometry ( 1). That free BPA method provided a means to account for and/or eliminate background contamination and demonstrated accuracy and reproducibility in both matrices fortified with BPA or a surrogate analyte ((13)C BPA) at a low method quantitation limit (MQL) of 0.1-0.2 ng/mL. In contrast to the free BPA method results and based on stringent accuracy, precision and confirmation criteria set for the MQLs of the method developed for total BPA, the MQL achieved in blood was 1.020-2.550 and 0.510-1.020 ng/mL in urine. These data showed higher MQLs than the desired MQLs of 0.5 ng/mL (blood) and 0.2 ng/mL (urine) with increased variability between analyses which demonstrates the importance of generating method validation data with each analysis. In contrast, the MQL achieved for (13)C BPA-G (monoglucuronide as a surrogate analyte in blood was 0.2-0.5 and 0.2 ng/mL in urine illustrating that the method is capable of meeting lower MQL requirements if the contribution from exogenous BPA can be well controlled. This method for the determination total BPA in human blood and urine is intended to be used in conjunction with the free BPA method ( 1) to obtain accurate and complete BPA biomonitoring data to support human exposure assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.