Step 2 Analysis performed: 1) 11 th cycle to identify 8 points in time to initiate the maneuver (load-following); 2) Load following maneuver at each pre-selected points Goals: skewed power shapes for initiating LOCA analyses Used tools: PHISICS/RELAP5-3D in multi-deck modeStep 3Analysis performed: Steady state calculation to migrate from 1 core channel/assembly to 6 channel model used in LOCA analysis Goals: initial conditions in the lumped TH model (6 channels) Used tools: RELAP5-3DStep 4Analysis performed: LOCA transients at each preselected point in time (after the maneuver) Goals: identify the limiting conditions Used tools:
This report was .prepared as an account of work sponsored by an agency of t h e United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes a n y legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by t h e United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of t h e United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350-and 500micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system.
A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.
The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.