SummaryIntercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering 'sustainable intensification'. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and speciesfor example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above-and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.
Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ∼10% of penetration resistances were >2 MPa at a matric potential of -10 kPa, rising to nearly 50% >2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.
The remarkable complexity of soil and its importance to a wide range of ecosystem services presents major challenges to the modeling of soil processes. Although major progress in soil models has occurred in the last decades, models of soil processes remain disjointed between disciplines or ecosystem services, with considerable uncertainty remaining in the quality of predictions and several challenges that remain yet to be addressed. First, there is a need to improve exchange of knowledge and experience among the different disciplines in soil science and to reach out to other Earth science communities. Second, the community needs to develop a new generation of soil models based on a systemic approach comprising relevant physical, chemical, and biological processes to address critical knowledge gaps in our understanding of soil processes and their interactions. Overcoming these challenges will facilitate exchanges between soil modeling and climate, plant, and social science modeling communities. It will allow us to contribute to preserve and improve our assessment of ecosystem services and advance our understanding of climate-change feedback mechanisms, among others, thereby facilitating and strengthening communication among scientific disciplines and society. We review the role of modeling soil processes in quantifying key soil processes that shape ecosystem services, with a focus on provisioning and regulating services. We then identify key challenges in modeling soil processes, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes. We discuss how the soil modeling community could best interface with modern modeling activities in other disciplines, such as climate, ecology, and plant research, and how to weave novel observation and measurement techniques into soil models. We propose the establishment of an international soil modeling consortium to coherently advance soil modeling activities and foster communication with other Earth science disciplines. Such a consortium should promote soil modeling platforms and data repository for model development, calibration and intercomparison essential for addressing contemporary challenges.
The production of exudates by plant roots and microbes in the rhizosphere, together with intense wetting and drying cycles due to evapotranspiration, stimulate changes in soil structure. We have attempted to separate these two processes using an experimental model with bacterial exopolysaccharides (dextran and xanthan) and root mucilage analogues (polygalacturonic acid, PGA), and up to 10 cycles of wetting and drying. To characterize the soil structure, tensile strength, water sorptivity and ethanol sorptivity of the amended soils were measured, and thin sections were made. Xanthan and PGA induced greater tensile strength of the amended soil, suggesting that they increased the bond energy between particles. Porosity increased with each cycle of wetting and drying, and this increase was less pronounced for the PGA 2 g l ±1 than for the xanthan and dextran. This suggests that PGA stabilized the soil against the disruptive effect caused by the wetting and drying. The PGA was the only polysaccharide that in¯uenced water sorptivity and repellency, resulting in slower wetting of the treated soil. Wetting and drying led to an increase of the sorptivity and a decrease of the repellency for all treatments with the exception of the PGA-amended soils. The PGA may therefore stabilize the soil structure in the rhizosphere by increasing the strength of bonds between particles and decreasing the wetting rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.