An experiment using a large laser facility to simulate young supernova remnants ͑SNRs͒ is discussed. By analogy to the SNR, the laboratory system includes dense matter that explodes, expansion and cooling to produce energetic, flowing plasma, and the production of shock waves in lower-density surrounding matter. The scaling to SNRs in general and to SN1987A in particular is reviewed. The methods and results of x-ray radiography, by which the system in diagnosed, are discussed. The data show that the hohlraum used to provide the energy for explosion does so in two ways-first, through its radiation pulse, and second, through an additional impulse that is attributed to stagnation pressure. Attempts to model these dynamics are discussed.
Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. The measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ∼5%, without inclusion of higher order 2D and 3D effects.
A Talbot–Lau X-ray Deflectometer (TXD) was implemented in the OMEGA EP laser facility to characterize the evolution of an irradiated foil ablation front by mapping electron densities >1022 cm−3 by means of Moiré deflectometry. The experiment used a short-pulse laser (30–100 J, 10 ps) and a foil copper target as an x-ray backlighter source. In the first experimental tests performed to benchmark the diagnostic platform, grating survival was demonstrated and x-ray backlighter laser parameters that deliver Moiré images were described. The necessary modifications to accurately probe the ablation front through TXD using the EP-TXD diagnostic platform are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.