IntroductionTumor invasion with subsequent metastases is the major cause of morbidity and mortality in patients with cancer. For patients with breast cancer, the development of metastases is the most important prognostic factor, as almost all patients with distant metastasis succumb to the disease [1][2][3].Numerous studies have linked aberrant expression of E-cadherin with the development of metastases in breast cancer and other cancers. E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent intercellular adhesion and is specifically involved in epithelial cell-tocell adhesion [4][5][6]. The E-cadherin gene, located on chromosome 16q22.1, is an important regulator of morphogenesis [7,8]. In cancer, decreased E-cadherin expression is one of the alterations that characterizes the invasive phenotype, and the data support its role as a tumor suppressor gene [9][10][11][12] Normal ductal epithelial cells in the mammary gland strongly express E-cadherin protein in the cytoplasmic membrane [21,22]. Some studies in breast cancer have ER = estrogen receptor; PR = progesterone receptor. Kowalski et al., licensee BioMed Central Ltd (Print ISSN 1465-5411; Online ISSN 1465-542X). This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. AbstractIntroduction Aberrant expression of E-cadherin has been associated with the development of metastases in patients with breast cancer. Even though the expression of E-cadherin has been studied in primary breast tumors, little is known about its expression at the distant metastatic sites. We investigate the relationship between E-cadherin expression in primary breast carcinoma and their distant, non-nodal metastases.
We apply MALDI-TOF/TOF mass spectrometry for the rapid and high-confidence identification of intact Bacillus spore species. In this method, fragment ion spectra of whole (undigested) protein biomarkers are obtained without the need for biomarker prefractionation, digestion, separation, and cleanup. Laser-induced dissociation (unimolecular decay) of higher mass (>5 kDa) precursor ions in the first TOF analyzer is followed by reacceleration and subsequent high-resolution mass analysis of the resulting sequence-specific fragments in a reflectron TOF analyzer. In-house-developed software compares an experimental MS/MS spectrum with in silico-generated tandem mass spectra from all protein sequences, contained in a proteome database, with masses within a preset range around the precursor ion mass. A p-value, the probability that the observed matches between experimental and in silico-generated fragments occur by chance, is computed and used to rank the database proteins to identify the most plausible precursor protein. By inference, the source microorganism is then identified on the basis of the identification of individual, unique protein biomarker(s). As an example, intact Bacillus atrophaeus and Bacillus cereus spores, either pure or in mixtures, were unambiguously identified by this method after fragmenting and identifying individual small, acid-soluble spore proteins that are specific for each species. Factors such as experimental mass accuracy and number of detected fragment ions, precursor ion charge state, and sequence-specific fragmentation have been evaluated with the objective of extending the approach to other microorganisms. MALDI-TOF/TOF-MS in a lab setting is an efficient tool for in situ confirmation/verification of initial microorganism identification.
Four [(CdSe)13(RNH2)13] derivatives (R = n-propyl, n-pentyl, n-octyl, and oleyl) are prepared by reaction of Cd(OAc)2·2H2O and selenourea in the corresponding primary-amine solvent. The nanoclusters grow in spontaneously formed amine-bilayer templates, and are characterized by elemental analysis, IR spectroscopy, UV-visible spectroscopy, TEM, and low-angle XRD. The derivative [(CdSe)13(n-propylamine)13] is isolated as a yellowish-white solid (MP 98 °C) on the gram scale. These compounds are the first derivatives of magic-size CdSe nanoclusters to be isolated in purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.