A good understanding of different rock types and their distribution is critical to locate oil and gas accumulations in the subsurface. Traditionally, rock core samples are used to directly determine the exact rock facies and what geological environments might be present. Core samples are often expensive to recover and, therefore, not always available for each well. Wireline logs provide a cheaper alternative to core samples, but they do not distinguish between various rock facies alone. This problem can be overcome by integrating limited core data with largely available wireline log data with machine learning. Here, we presented an application of machine learning in rock facies predictions based on limited core data from the Umiat Oil Field of Alaska. First, we identified five sandstone reservoir facies within the Lower Grandstand Member using core samples and mineralogical data available for the Umiat 18 well. Next, we applied machine learning algorithms (ascendant hierarchical clustering, self-organizing maps, artificial neural network, and multi-resolution graph-based clustering) to available wireline log data to build our models trained with core-driven information. We found that self-organizing maps provided the best result among other techniques for facies predictions. We used the best self-organizing maps scheme for predicting similar reservoir facies in nearby uncored wells—Umiat 23H and SeaBee-1. We validated our facies prediction results for these wells with observed seismic data.
SUMMARY
X‐ray microanalysis at temperatures near that of liquid nitrogen is used to determine the halogen content of small volumes of halogenated copper phthalocyanine pigments. Details of the low‐temperature stage used and the benefits conferred by cooling the sample are given. The experimental procedure adopted involved recording a series of spectra from the same area and extrapolating the measured compositions to zero dose. Factors affecting the accuracy of the analyses are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.