The effects of acute hypoxia (2 days at 4350 m) on whole saliva flow and composition were studied on 12 sea-level natives, at rest and following a maximal exercise. Exercise, performed in normoxia and hypoxia, did not induce variations in saliva flow rate, saliva potassium or alpha-amylase concentrations. In contrast, acute hypoxia did lead to an increase in mean saliva flow rate both at rest (0.63 ml.min-1 to 0.93 ml.min-1, P less than 0.01) and after exercise (0.56 ml.min-1 to 1.06 ml.min-1, P less than 0.05) and a decrease in mean saliva potassium concentration at rest (20.8 mmol.l-1 to 14.7 mmol.l-1, P less than 0.01) as well as after exercise (21.7 mmol.l-1 to 16.5 mmol.l-1, P less than 0.05). This effect might be the consequence of a hypoxia-induced stimulation of the parasympathetic nervous system.
The difficulty in taking sweat during heavy physical exercise has drawn the authors into testing a technique of sampling generally used in paediatrics. The fact that the results, which have been dealt with statistically, should coincide with the physiological facts already published allows us to consider a use of the technique in order to investigate the physiological mechanisms in action during sweating under different metabolic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.