SUMMARYFrom a literature search, information has been compiled on the mycorrbizal status under field conditions of 20 or more species in each of 25 families. Tbe percentage of species which are mycorrbizal ranged from 100% in seven families to 8% in Cruciferae, many families having additional species that are sometimes mycorrhizal. No family in the list was consistently non-mycorrbizal. Apart from tbe Ericaceae, tbe families were either predominantly ectomycorrbizal or predominantly VA mycorrbizal. However, almost all families bad at least one example of each of tbese mycorrbizal types.
Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-βI, -βII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer.
Objective To evaluate the efficacy and safety of tigilanol tiglate (TT) for local intratumoral treatment of mast cell tumors (MCTs) in dogs. Methods A randomized controlled clinical study in 2 phases involving 123 dogs with cytologically diagnosed MCT. Phase 1 compared 81 TT‐treated dogs with 42 control dogs; phase 2 allowed TT treatment of control dogs and retreatment of dogs that failed to achieve tumor resolution after TT treatment in phase 1. Tigilanol tiglate (1 mg/mL) was injected intratumorally with dose based on tumor volume. Concomitant medications were used to minimize potential for MCT degranulation. Modified response evaluation criteria in solid tumors were used to evaluate treatment response at 28 and 84 days. Adverse events and quality of life were also assessed. Results A single TT treatment resulted in 75% complete response (CR) (95% confidence interval [CI] = 61‐86) by 28 days, with no recurrence in 93% (95% CI = 82‐97) of dogs by 84 days. Eight TT‐treated dogs that did not achieve CR in phase 1 achieved CR after retreatment, increasing the overall CR to 88% (95% CI = 77‐93). Control dogs had 5% CR (95% CI = 1‐17) at 28 days. Wound formation after tumor slough and wound size relative to tumor volume were strongly associated with efficacy. Adverse events typically were low grade, transient, and directly associated with TT's mode of action. Conclusions Tigilanol tiglate is efficacious and well tolerated, providing a new option for the local treatment of MCTs in dogs.
Abstract:This article presents a comprehensive study of canopy interception in six rainforests in Australia's Wet Tropics for periods ranging between 2 and 3Ð5 years. Measurements of rainfall, throughfall, stemflow and cloud interception were made at sites characterized by different forest types, canopy structure, altitude, rainfall and exposure to prevailing winds. Throughfall at these sites ranged between 64 and 83% of total precipitation inputs, while stemflow ranged between 2 and 11%. At sites higher than 1000 m, cloud interception was found to contribute up to 66% of the monthly water input to the forest, more than twice the rainfall at these times. Over the entire study period, cloud interception accounted for between 4 and 30% of total precipitation inputs, and was related more to the exposure of sites to prevailing winds than to altitudinal differences alone.Over the duration of the study period, interception losses ranged between 22 and 29% of total water input (rainfall and cloud interception) at all sites except the highest altitude site on Bellenden Ker, where interception was 6% of total water input. This smaller interception loss was the result of extremely high rainfall, prolonged immersion in cloud and a sparser canopy. On a monthly basis, interception losses from the six sites varied between 10 and 88% of rainfall. All sites had much higher interception losses during the dry season than in the wet season because of the differences in storm size and rainfall intensity. The link between rainfall conditions and interception losses has important implications for how evaporative losses from forests may respond to altered rainfall regimes under climate change and/or large-scale atmospheric circulation variations such as El Niño.
Symbioses between the root nodule-forming, nitrogen-fixing actinomycete Frankia and its angiospermous host plants are important in the nitrogen economies of numerous terrestrial ecosystems. Molecular characterization of Frankia strains using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses of the 16S rRNA-ITS gene and of the nifD-nifK spacer was conducted directly on root nodules collected worldwide from Casuarina and Allocasuarina trees. In their native habitats in Australia, host species contained seven distinctive sets of Frankia in seven different molecular phylogenetic groups. Where Casuarina and Allocasuarina trees are newly planted outside Australia, they do not normally nodulate unless Frankia is introduced with the host seedling. Nodules from Casuarina trees introduced outside Australia over the last two centuries were found to contain Frankia from only one of the seven phylogenetic groups associated with the host genus Casuarina in Australia. The phylogenetic group of Frankia found in Casuarina and Allocasuarina trees introduced outside Australia is the only group that has yielded isolates in pure culture, suggesting a greater ability to survive independently of a host. Furthermore, the Frankia species in this group are able to nodulate a wider range of host species than those in the other six groups. In baiting studies, Casuarina spp. are compatible with more Frankia microsymbiont groups than Allocasuarina host spp. adapted to drier soil conditions, and C. equisetifolia has broader microsymbiont compatibility than other Casuarina spp. Some Frankia associated with the nodular rhizosphere and rhizoplan, but not with the nodular tissue, of Australian hosts were able to nodulate cosmopolitan Myrica plants that have broad microsymbiont compatibility and, hence, are a potential host of Casuarinaceae-infective Frankia outside the hosts' native range. The results are consistent with the idea that Frankia symbiotic promiscuity and ease of isolation on organic substrates, suggesting saprophytic potential, are associated with increased microsymbiont ability to disperse and adapt to diverse new environments, and that both genetics and environment determine a host's nodular microsymbiont.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.