SUMMARY To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSC). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease such as how different copy number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, as well as the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC.
Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low µg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.Proteomic technologies based on mass spectrometry (MS) have emerged as preferred components of a strategy for discovery of diagnostic, prognostic and therapeutic protein biomarkers. Because of the stochastic sampling of proteomes in unbiased analyses and the associated high false-discovery rate, tens to hundreds of potential biomarkers are often reported in discovery studies. Those few that will ultimately show sufficient sensitivity and specificity for a given medical condition must thus be culled from lengthy lists of candidates -a particularly challenging aspect of the biomarker-development pipeline and currently its main limiting step. In this context, it is highly desirable to verify, by more targeted quantitative methods, the levels of candidate biomarkers in body fluids, cells, tissues or organs from healthy individuals and affected patients in large enough sample numbers to confirm statistically relevant differences 1, 2. Verification of novel biomarkers has relied primarily on the use of sensitive, specific, high-throughput immunoassays, whose development depends critically on the availability of suitable well-characterized antibodies. However, antibody reagents of sufficient specificity and sensitivity to assay novel protein biomarkers in plasma are generally not available. The high cost and long development time required to generate high-quality immunoassay reagents, as well as technical limitations in multiplexing immunoassays for panels of biomarkers, is strong motivation to develop more straightforward quantitative approaches exploiting the sensitivity and molecular specificity of mass spectrometry.Recently, multiple reaction monitoring (MRM) coupled with stable isotope dilution (SID)-MS for direct quantification of proteins in cell lysates as well as human plasma and serum has been shown to have considerable promise 3- RESULTS Study de...
Highlights d Systematic identification of colon cancer-associated proteins and phosphosites d Proteomics-supported neoantigens and cancer/testis antigens in 78% of the tumors d Rb phosphorylation is an oncogenic driver and a putative target in colon cancer d Glycolysis inhibition may render MSI tumors more sensitive to checkpoint blockade
The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.