1. We measured fractional rates of protein synthesis, capacities for protein synthesis (i.e. RNA/protein ratio) and efficiencies of protein synthesis (i.e. protein-synthesis rate relative to RNA content) in fasted (24 or 48 h) or fasted/surgically stressed female adult rats. 2. Of the 15 tissues studied, fasting caused decreases in protein content in the liver, gastrointestinal tract, heart, spleen and tibia. There was no detectable decrease in the protein content of the skeletal muscles studied. 3. Fractional rates of synthesis were not uniformly decreased by fasting. Rates in striated muscles, uterus, liver, spleen and tibia were consistently decreased, but decreases in other tissues (lung, gastrointestinal tract, kidney or brain) were inconsistent or not detectable, suggesting that, in many tissues in the mature rat, protein synthesis was not especially sensitive to fasting. 4. In fasting, the decreases in fractional synthesis rate resulted from changes in efficiency (liver and tibia) or from changes in efficiency and capacity (heart, diaphragm, plantaris and gastrocnemius). In the soleus, the main change was a decrease in capacity. 5. Surgical stress increased fractional rates of protein synthesis in diaphragm (where there were increases in both efficiency and capacity) by about 50%, in liver by about 20%, in spleen by about 40%, and possibly also in the heart. In liver and spleen, capacities were increased. In other tissues (including the skeletal muscles), the fractional rates of protein synthesis were unaffected by surgical stress.
The concentrations of malonyl-CoA, citrate, ketone bodies and long-chain acylcarnitine were measured in freeze-clamped liver samples from fed or starved normal, partially hepatectomized or sham-operated rats. These parameters were used in conjunction with measurements of the concentration of plasma non-esterified fatty acids and the rates of hepatic lipogenesis to obtain correlations between rates of fatty acid delivery to the liver, lipogenesis and fatty acid oxidation to ketone bodies and CO2. These correlations indicated that the development of fatty liver after partial hepatectomy is due to an increased partitioning of long-chain acyl-CoA towards acylglycerol synthesis and away from acylcarnitine formation. However, this did not appear to be due to an altered relationship between hepatic malonyl-CoA concentration and acylcarnitine formation. For any concentration of long-chain acylcarnitine, the concentrations of both hepatic and blood ketone bodies were significantly lower in partially hepatectomized rats than in normal or sham-operated animals. This indicated that a lower proportion of the product of beta-oxidation was used for ketone-body formation and more for citrate synthesis in the regenerating liver, especially during the first 24 h after resection. This inference was supported by the changes in hepatic citrate concentrations observed. The high rates of lipogenesis that occurred in the liver remnant were accompanied by an altered relationship between lipogenic rate and hepatic malonyl-CoA concentration, such that much lower concentrations of malonyl-CoA were associated with any given rate of lipogenesis. These adaptations are discussed in relation to the requirements by the remnant for high rates of energy formation through the tricarboxylic acid cycle during the first 24 h after resection, and the possibility that cycling between fatty acid oxidation and synthesis may occur to a greater degree in regenerating liver.
This study examined the effects of partial hepatectony on hepatic carnitine and acylcarnitine concentrations in fed or 24 h-starved partially hepatectonized (PH) or sham-operated (SO) rats at 1 or 4 days after surgery. The ratio of free to esterified carnitine was low in fed PH rats at day 1: the low ratio was increased to the SO value when mitochondrial fat oxidation was inhibited by 2-tetradecylglycidate.fatty acid] in PH or SO rats, the increases being greater at day 1 than at day 4. Hepatic [long-chain acylcarnitine] were also increased. These latter increases were a consequence of increased mitochondrial fat oxidation since they were not observed in PH or SO rats treated with 2-tetradecylglycidate. Whereas the starvation-induced increase in long-chain acylcarnitine was associated with increased [ketone body] in livers of SO rats at both day 1 and day 4 after surgery, [ketone body] was inappropriately low for the steady-state long-chain [acylcarnitine] in livers of PH rats at the first post-operative day. This was not a consequence of a decrease in [total carnitine] in the liver. The results are discussed with reference to the role of the liver in determining the relative proportions of the fat fuels available for extrahepatic tissues and the effects of liver cell proliferation on hepatic triacylclycerol metabolism. Partial hepatectomy Mitochondrialfat oxidation
Effects of partial hepatectomy on protein synthesis were defined in liver and extra-hepatic tissues of the mature rat. Studies were performed at 24 h and 48 h after surgery in the absence of the dietary input. Protein accretion in the regenerating liver preceded mitosis, but was accompanied by increases in RNA content and fractional rates of protein synthesis (ks). A positive relationship existed between protein-synthetic capacity and ks over the period of study. Increases in ks also bore a positive relationship with increases in translational efficiency. Extra-hepatic tissues showing decreased rates of protein synthesis after liver resection included kidney, striated muscles and brain. Effects were observed mainly at 24 h after surgery and resulted from decreased translational efficiency. Partial hepatectomy increased ks in diaphragm and tibia at both 24 h and 48 h after surgery. In diaphragm, there was net protein accretion, and, as in liver, increases in ks were due to increases in both protein-synthetic capacity and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.