Animations of simple geometric shapes are readily interpreted as animate agents engaged in meaningful social interactions. Such animations have been shown to activate brain regions implicated in the detection of animate motion, in understanding the intentions of others as well as areas commonly linked to the processing of social and emotional information. However, attribution of animacy does not occur under all circumstances and the precise conditions under which specific regions are activated remains unclear. In a functional magnetic resonance imaging study we manipulated viewers' perspective to assess the part played by selective attention. Participants were cued to attend either to spatial properties of the movements or to the kind of social behavior it could represent. Activations that occurred to the initial cue, while observing the animations themselves and while responding to a postpresentation probe, were analyzed separately. Results showed that activity in the social brain network was strongly influenced by selective attention, and that remarkably similar activations were seen during film viewing and in response to probe questions. Our use of stimuli supporting rich and diverse social narratives likely enhanced the influence of top-down processes on neural activity in the social brain.
These results strongly suggest that an oxidative-mediated pathway exists in Genta-induced MC activation. A portion of the production of O2- may be due to NADP(H) oxidase and NOS activation. The amount of ROS produced, rather than having a toxic effect, might play a role as a mediator of Genta-induced MC activation
According to theories of emotional complexity, individuals low in emotional complexity encode and represent emotions in visceral or action-oriented terms, whereas individuals high in emotional complexity encode and represent emotions in a differentiated way, using multiple emotion concepts. During functional magnetic resonance imaging, participants viewed valenced animated scenarios of simple ball-like figures attending either to social or spatial aspects of the interactions. Participant’s emotional complexity was assessed using the Levels of Emotional Awareness Scale. We found a distributed set of brain regions previously implicated in processing emotion from facial, vocal and bodily cues, in processing social intentions, and in emotional response, were sensitive to emotion conveyed by motion alone. Attention to social meaning amplified the influence of emotion in a subset of these regions. Critically, increased emotional complexity correlated with enhanced processing in a left temporal polar region implicated in detailed semantic knowledge; with a diminished effect of social attention; and with increased differentiation of brain activity between films of differing valence. Decreased emotional complexity was associated with increased activity in regions of pre-motor cortex. Thus, neural coding of emotion in semantic vs action systems varies as a function of emotional complexity, helping reconcile puzzling inconsistencies in neuropsychological investigations of emotion recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.