Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoylCoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota.
Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed >98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P=0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.
Bacterial β-glucuronidase in the human colon plays an important role in cleaving liver conjugates of dietary compounds and xenobiotics, while other glycosidase activities are involved in the conversion of dietary plant glycosides. Here we detected an increase in β-glucuronidase activity in faecal samples from obese volunteers following a high-protein moderate carbohydrate weight-loss diet, compared with a weight maintenance diet, but little or no changes were observed when the type of fermentable carbohydrate was varied. Other faecal glycosidase activities showed little or no change over a fivefold range of dietary NSP intake, although α-glucosidase increased on a resistant starch-enriched diet. Two distinct groups of gene, gus and BG, have been reported to encode β-glucuronidase activity among human colonic bacteria. Degenerate primers were designed against these genes. Overall, Firmicutes were found to account for 96% of amplified gus sequences, with three operational taxonomic units particularly abundant, whereas 59% of amplified BG sequences belonged to Bacteroidetes and 41% to Firmicutes. A similar distribution of operational taxonomic units was found in a published metagenome dataset involving a larger number of volunteers. Seven cultured isolates of human colonic bacteria that carried only the BG gene gave relatively low β-glucuronidase activity that was not induced by 4-nitrophenyl-β-D-glucuronide. By comparison, in three of five isolates that possessed only the gus gene, β-glucuronidase activity was induced.
Feces from dogs in an unexplained outbreak of diarrhea were analyzed by viral metagenomics revealing the genome of a novel parvovirus. The parvovirus was named cachavirus and was classified within the proposed Chapparvovirus genus. Using PCR, cachavirus DNA was detected in two of nine tested dogs from that outbreak. In order to begin to elucidate the clinical impact of this virus, 2,053 canine fecal samples were screened using real-time PCR. Stool samples from 203 healthy dogs were positive for cachavirus DNA at a rate of 1.47%, while 802 diarrhea samples collected in 2017 and 964 samples collected in 2018 were positive at rates of 4.0% and 4.66% frequencies, respectively (healthy versus 2017-2018 combined diarrhea p-value of 0.05). None of 83 bloody diarrhea samples tested positive. Viral loads were generally low with average real-time PCR Ct values of 36 in all three positive groups. The species tropism and pathogenicity of cachavirus, the first chapparvovirus reported in feces of a placental carnivore, remains to be fully determined.
Bacterial butyryl-CoA CoA-transferase activity plays a key role in butyrate formation in the human colon, but the enzyme and corresponding gene responsible for this activity have not previously been identified. A novel CoA-transferase gene is described from the colonic bacterium Roseburia sp. A2-183, with similarity to acetyl-CoA hydrolase as well as 4-hydroxybutyrate CoA-transferase sequences. The gene product, overexpressed in an Escherichia coli lysate, showed activity with butyryl-CoA and to a lesser degree propionyl-CoA in the presence of acetate. Butyrate, propionate, isobutyrate and valerate competed with acetate as the co-substrate. Despite the sequence similarity to 4-hydroxybutyrate CoA-transferases, 4-hydroxybutyrate did not compete with acetate as the co-substrate. Thus the CoA-transferase preferentially uses butyryl-CoA as substrate. Similar genes were identified in other butyrate-producing human gut bacteria from clostridial clusters IV and XIVa, while other candidate CoA-transferases for butyrate formation could not be detected in Roseburia sp. A2-183. This suggests strongly that the newly identified group of CoA-transferases described here plays a key role in butyrate formation in the human colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.