In interventional cardiology, a wide variation in patient dose for the same type of procedure has been recognised by different studies. Variation is almost due to procedure complexity, equipment performance, procedure protocol and operator skill. The SENTINEL consortium has performed a survey in nine european centres collecting information on near 2000 procedures, and a new set of reference levels (RLs) for coronary angiography and angioplasty and diagnostic electrophysiology has been assessed for air kerma-area product: 45, 85 and 35 Gy cm2, effective dose: 8, 15 and 6 mSv, cumulative dose at interventional reference point: 650 and 1500 mGy, fluoroscopy time: 6.5, 15.5 and 21 min and cine frames: 700 and 1000 images, respectively. Because equipment performance and set-up are the factors contributing to patient dose variability, entrance surface air kerma for fluoroscopy, 13 mGy min(-1), and image acquisition, 0.10 mGy per frame, have also been proposed in the set of RLs.
Patient doses for a few common fluoroscopy-guided procedures in interventional radiology (IR) (excluding cardiology) were collected from a few radiological departments in 13 European countries. The major aim was to evaluate patient doses for the basis of the reference levels. In total, data for 20 procedures for about 1300 patients were collected. There were many-fold variations in the number of IR equipment and procedures per population, in the entrance dose rates, and in the patient dose data (total dose area product or DAP, fluoroscopy time and number of frames). There was no clear correlation between the total DAP and entrance dose rate, or between the total DAP and fluoroscopy time, indicating that a number of parameters affect the differences. Because of the limited number of patients, preliminary reference levels were proposed only for a few procedures. There is a need to improve the optimisation of IR procedures and their definitions and grouping, in order to account for their different complexities.
New developments in dual energy X-ray absorptiometry (DEXA) imaging technology [fan beam and cone beam (CB)] result in higher exposure levels, shorter scan times, increased patient throughput and increased shielding requirements. This study presents the results of a European survey detailing the number and location of DEXA systems in SENTINEL partner states and the QA (quality assurance) currently performed by physicists and operators in these centres. The results of a DEXA equipment survey based on an in-house developed QA protocol are presented. Measurements show that the total effective dose to the patient from a spine and dual femur DEXA examination on the latest generation DEXA systems is comparable with a few microSv at most. Scatter measurements showed that the use of a mobile lead screen for staff protection was necessary for fan and CB systems. Scattered dose from newer generation systems may also exceed the exposure limits for the general public so structural shielding may also be required. Considerable variation in the magnitude and annual repeatability of half value layer was noted between different models of DEXA scanners. A comparative study of BMD (bone mineral density) accuracy using the European Spine Phantom highlighted a deviation of up to 7% in BMD values between scanners of different manufacturers.
In the present study, we evaluated the applicability of ex vivo photoacoustic imaging (PAI) on small animal organs. We used photoacoustic tomography (PAT) to visualize infarcted areas within murine hearts and compared these data to other imaging techniques [magnetic resonance imaging (MRI), micro-computed tomography] and histological slices. In order to induce ischemia, an in vivo ligation of the left anterior descending artery was performed on nine wild-type mice. After varying survival periods, the hearts were excised and fixed in formaldehyde. Samples were illuminated with nanosecond laser pulses delivered by a Nd:YAG pumped optical parametric oscillator. Ultrasound detection was achieved using a Mach-Zehnder interferometer (MZI) working as an integrating line detector. The voxel data were computed using a Fourier-domain based reconstruction algorithm, followed by inverse Radon transforms. The results clearly showed the capability of PAI to visualize myocardial infarction and to produce three-dimensional images with a spatial resolution of approximately 120 μm. Regions of affected muscle tissue in PAI corresponded well with the results of MRI and histology. Photoacoustic tomography utilizing a MZI for ultrasound detection allows for imaging of small tissue samples. Due to its high spatial resolution, good soft tissue contrast and comparatively low cost, PAT offers great potentials for imaging.
In interventional cardiac procedures, staff operates near the patient in a non-uniformly scattered radiation field. Consequently, workers may receive, over a period, relatively high radiation doses. The measurement of individual doses to personnel becomes critical due to the use of protective devices and, as a consequence of the large number of methods proposed to assess the effective dose, great variability in monitoring programmes is expected among European countries. SENTINEL consortium has conducted a survey on staff dosimetry methods and on the level of staff exposure in 12 European cardiac centres demonstrating the urgent need to harmonise dosimetry methods. From the dosimetry survey, constraint annual effective dose of 1.4 mSv and Hp(0.07) over the protective apron of 14 mSv are proposed for the optimisation the exposure the most-exposed operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.