It is argued that %dd(10), the percentage depth dose at 10 cm in a 10 x 10 cm2 photon beam at a SSD of 100 cm, is a better beam quality specifier for radiotherapy beams than the commonly used values of TPR10(20) or nominal accelerating potential (NAP). For radiation dosimetry purposes, TPR10(20) is not an ideal beam quality specifier because (i) stopping-power ratios for the same value of TPR10(20) can vary by up to 0.7% for thick-target bremsstrahlung beams; (ii) the value of TPR10(20) becomes insensitive to beam quality changes for high-energy beams; and (iii) it has little intuitive meaning. In contrast, %dd(10) in a pure photon beam specifies stopping-power ratios within 0.2% for all thick-target bremsstrahlung beams, maintains its sensitivity for high-energy beams, and has a simple physical and clinical meaning. It is shown that for all thick-target bremsstrahlung beams the spr (water/air) = 1.2676-0.002 224[%dd(10)] with a rms deviation of 0.1%. The effects of electron contamination in typical high-energy clinical beams can be corrected for using previously published experimental results or by reducing electron contamination using lead scattering foils.
For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)‐simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read‐out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose‐dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read‐out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read‐out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% false(normalk=2false). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC‐simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV–16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read‐out procedure established, the nearly uniform energy dependence found and the estimated uncertainties, the EBT3 film was concluded to be a suitable 2D dosimeter for measuring electron or mixed photon/electron dose distributions in water phantom. Uncertainties of 3.7% false(normalk=2false) for absolute and 2.3% false(normalk=2false) for relative dose were estimated.PACS numbers: 87.53.Bn, 87.55.K‐, 87.55.Qr
Patient doses for a few common fluoroscopy-guided procedures in interventional radiology (IR) (excluding cardiology) were collected from a few radiological departments in 13 European countries. The major aim was to evaluate patient doses for the basis of the reference levels. In total, data for 20 procedures for about 1300 patients were collected. There were many-fold variations in the number of IR equipment and procedures per population, in the entrance dose rates, and in the patient dose data (total dose area product or DAP, fluoroscopy time and number of frames). There was no clear correlation between the total DAP and entrance dose rate, or between the total DAP and fluoroscopy time, indicating that a number of parameters affect the differences. Because of the limited number of patients, preliminary reference levels were proposed only for a few procedures. There is a need to improve the optimisation of IR procedures and their definitions and grouping, in order to account for their different complexities.
Occupational radiation doses in interventional radiology can potentially be high. Therefore, reliable methods to assess the effective dose are needed. In the present work, the relationship between the personal dose equivalent, H(p)(10), the reading of a personal dosimeter and the effective dose of the radiologist were studied using Monte Carlo simulations. In particular, the protection provided by a lead apron was investigated. Emphasis was placed on sensitivity of the results to changes in irradiation conditions. In our simulations a 0.35 mm thick lead apron and thyroid shield reduced the effective dose, on average, by a factor of 27 (the range of these data was 15-41). Without the thyroid shield the average reduction factor was 15 (range 6-22). The reduction sensitively depended on the projection and the X-ray tube voltage. The dosimeter reading, when the dosimeter was worn above the apron and a thyroid shield was used, overestimated the effective dose on average by a factor of 130 (range 44-258) when the dosimeter was located on the breast closest to the primary X-ray beam. Without the thyroid shield the average overestimation was 69 (range 32-127). If the dosimeter was worn under the apron its reading generally underestimated the effective dose (on average by 20% with the thyroid shield). Our study indicates that, even though large variations are present, the often used conversion coefficient from the dosimeter reading above the apron to the effective dose, around 1/30, generally overestimates the effective dose by a factor of two or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.