Abstract. In this paper a compact FPGA architecture for the AES algorithm with 128-bit key targeted for low-cost embedded applications is presented. Encryption, decryption and key schedule are all implemented using small resources of only 222 Slices and 3 Block RAMs. This implementation easily fits in a low-cost Xilinx Spartan II XC2S30 FPGA. This implementation can encrypt and decrypt data streams of 150 Mbps, which satisfies the needs of most embedded applications, including wireless communication. Specific features of Spartan II FPGAs enabling compact logic implementation are explored, and a new way of implementing MixColumns and InvMixColumns transformations using shared logic resources is presented.
The new design methodology for secret-key block ciphers, based on introducing an optimum number of pipeline stages inside of a cipher round is presented and evaluated. This methodology is applied to five well-known modern ciphers, Triple DES, Rijndael, RC6, Serpent, and Twofish, with the goal to first obtain the architecture with the optimum throughput to area ratio, and then the architecture with the highest possible throughput. All ciphers are modeled in VHDL, and implemented using Xilinx Virtex FPGA devices. It is demonstrated that all investigated ciphers can operate with similar maximum clock frequencies, in the range from 95 to 131 MHz, limited only by the delay of a single CLB layer and delays of interconnects. Rijndael, RC6, Twofish, and Serpent achieve throughputs in the range from 12.1 Gbit/s to 16.8 Gbit/s; and Triple DES achieves the throughput of 7.5 Gbit/s. Because of the optimum speed to cost ratio, the proposed architecture seems to be very well suited for practical implementations of secret-key block ciphers using both FPGAs and custom ASICs. We also show that using this architecture for comparing hardware performance of secret-key block ciphers, such as AES candidates, operating in non-feedback cipher modes, leads to the more prudent and fairer analysis than comparisons based on other types of pipelined architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.