Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.
Novel substances of expected doping activity are constantly introduced to the market. β-Methylphenethylamine (BMPEA) is classified as a doping agent by the World Anti-Doping Agency as it is a positional isomer of amphetamine. In this work, the development and application of a simple and rapid analytical procedure that enables discrimination between both isomers is described. The analytes of interest were extracted from urine by a two-step liquid–liquid extraction and then analyzed by UPLC/MS/MS under isocratic conditions. The entire analytical procedure was validated by evaluating its selectivity, discrimination capabilities, carry-over, sensitivity, and influence of matrix effects on its performance. Application of the method resulted in detection of BMPEA in eight anti-doping samples, including the first report of adverse analytical finding regarding its use. Further analysis showed that BMPEA may be eliminated unchanged along with its phase II conjugates, the hydrolysis of which may considerably improve detection capabilities of the method. Omission of the hydrolysis step may therefore, produce false-negative results. Testing laboratories should also carefully examine their LC/MS/MS-based amphetamine and BMPEA findings as both isomers fragment yielding comparable collision-induced dissociation spectra and their insufficient chromatographic separation may result in misidentification. This is of great importance in case of forensic analyses as BMPEA is not controlled by the public law, and its manufacturing, distribution, and use are legal.
The aim of the study was to examine the possible relationship between I/D polymorphism of ACE gene and selected indices of aerobic capacity among male and female athletes practising winter endurance sports. Sixty-six well-trained athletes (female n = 26, male n = 40), aged 18.4 ± 2.8 years, representing winter endurance sports (cross-country skiing, n = 48; biathlon, n = 8; Nordic combined, n = 10) participated in the study. Genotyping for ACE I/D polymorphism was performed using polymerase chain reaction. Maximal oxygen consumption (VO2max), maximal running velocity (Vmax) and running velocity at anaerobic threshold (VAT4) were determined in an incremental test to volitional exhaustion on a motorized treadmill. The ACE genotype had no significant effect on absolute VO2max, relative VO2max (divided by body mass or fat free body mass), VAT4 or Vmax. No interaction effect of gender x ACE genotype was found for each of the examined aerobic capacity indices. ACE gene variation was not found to be a determinant of aerobic capacity in either female or male Polish, well-trained endurance athletes participating in winter sports.
Triamcinolone acetonide (TA) is a synthetic corticosteroid commonly used in medical practice to treat various skin conditions, including eczema, dermatitis, and allergies. It is a highly potent derivative of triamcinolone, with a strength that is about eight times greater than prednisone. Although it is sometimes used by athletes, it is important to note that the World Anti-Doping Agency (WADA) prohibits the use of glucocorticoids in competition when administered via injection, oral (including oromucosal, such as buccal, gingival, or sublingual), or rectal routes. However, they are allowed if administered otherwise, such as via inhalation or topical application to the skin. Anti-doping laboratories generally report Adverse Analytical Findings (AAF) for glucocorticoid group substances when their estimated concentration exceeds 30 ng/mL, with some exceptions such as triamcinolone acetonide, which has a reporting limit of 15 ng/mL. It is important to note that this only applies to the parent compound of specified metabolites. To address interpretation issues that can arise with other glucocorticoids, such as budesonide, the authors of this study investigated whether similar issues occur with triamcinolone acetonide. Specifically, they examined whether therapeutic doses of the commonly used medication Previsone could result in anti-doping rule violations due to the presence of triamcinolone acetonide and its metabolites in urine. The study involved ten healthy volunteers, and the analytical procedure was developed using liquid/liquid extraction, hydrolysis, and LC/MS/MS analysis. The results of the study showed that topical administration of therapeutic doses of Previsone does not pose a threat of anti-doping rules violation, as the excretion of the parent compound does not exceed the reporting limit in urine. Additionally, the concentration of 6β-hydroxy Triamcinolone acetonide was also well below the reporting limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.