We show that the Hodge numbers of Sasakian manifolds are invariant under arbitrary deformations of the Sasakian structure. We also present an upper semi-continuity theorem for the dimensions of kernels of a smooth family of transversely elliptic operators on manifolds with homologically orientable transversely Riemannian foliations. We use this to prove that the $$\partial {\bar{\partial }}$$
∂
∂
¯
-lemma and being transversely Kähler are rigid properties under small deformations of the transversely holomorphic structure which preserve the foliation. We study an example which shows that this is not the case for arbitrary deformations of the transversely holomorphic foliation. Finally we point out an application of the upper-semi continuity theorem to K-contact manifolds.
Abstract. In the following paper we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter which may be considered generalizations of the Hilbert's fifth problem to this context. Most notably we present a "solution" to the problem for proper transitive groupoids and transitive groupoids with compact source fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.